設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且a4=8,S4-S1=38,則數(shù)列{an}的公比等于   
【答案】分析:首先根據(jù)條件和等比數(shù)列的性質(zhì)得出a2+a3=30進(jìn)而得出 即可求出結(jié)果.
解答:解:∵S4-S1=38
即a1+a2+a3+a4-a1=38
∵a4=8
∴a2+a3=30

解得q=或q=-(舍去)
故答案為
點(diǎn)評(píng):本題以等比數(shù)列為載體,考查了等比數(shù)列的性質(zhì)以及前n項(xiàng)和公式,熟練掌握公式是解題的關(guān)鍵,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)等比數(shù)列{an}的首項(xiàng)a1=
12
,前n項(xiàng)和為Sn,且210S30-(210+1)S20+S10=0,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a2=2,a3a4a5=29
(1)求首項(xiàng)a1和公比q的值;
(2)試證明數(shù)列{logman}(m>0且m≠1)為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江二模)設(shè)正項(xiàng)等比數(shù)列{an}的首項(xiàng)a1=
12
,前n項(xiàng)和為Sn,且-a2,a3,a1成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng);
(Ⅱ)求數(shù)列{nSn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)之積為T(mén)n,且T10=32,則
1
a5
+
1
a6
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)等比數(shù)列{an}的首項(xiàng)a1=
12
,前n項(xiàng)的和為Sn,210S30-(210+1)S20+S10=0.
(Ⅰ)求{an}的通項(xiàng);
(Ⅱ)求{nSn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案