【題目】如圖所示,⊙O與⊙O′相交于A、B兩點(diǎn),過A引直線CD,EF分別交兩圓于點(diǎn)C、D、E、F,EC與DF的延長線相交于點(diǎn)P,求證:∠P+∠CBD=180°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來.如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場,在海外共設(shè)多個分支機(jī)構(gòu),需要國內(nèi)公司外派大量后、后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從后和后的員工中隨機(jī)調(diào)查了位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
后 | |||
后 | |||
合計 | /p> |
(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有以上的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(Ⅱ)該公司舉行參觀駐海外分支機(jī)構(gòu)的交流體驗活動,擬安排名參與調(diào)查的后、后員工參加.后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機(jī)選出人,記選到愿意被外派的人數(shù)為;后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機(jī)選出人,記選到愿意被外派的人數(shù)為,求的概率.
參考數(shù)據(jù):
(參考公式:,其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面, , , 分別為, 的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求四棱錐的體積和截面的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心坐標(biāo),直線:被圓截得弦長為。
(Ⅰ)求圓的方程;
(Ⅱ)從圓外一點(diǎn)向圓引切線,求切線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)同時滿足:(。⿲τ诙x域內(nèi)的任意x,恒有f(x)+f(﹣x)=0;(ⅱ)對于定義域內(nèi)的任意x1 , x2 , 當(dāng)x1≠x2時,恒有 , 則稱函數(shù)f(x)為“二維函數(shù)”.現(xiàn)給出下列四個函數(shù):
①f(x)=
②f(x)=﹣x3+x
③
④
其中能被稱為“二維函數(shù)”的有 (寫出所有滿足條件的函數(shù)的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績在與兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左焦點(diǎn),若橢圓上存在一點(diǎn),滿足以橢圓短軸為直徑的圓與線段相切于線段的中點(diǎn).
(1)求橢圓的方程;
(2)過坐標(biāo)原點(diǎn)的直線交橢圓: 于、兩點(diǎn),其中點(diǎn)在第一象限,過作軸的垂線,垂足為,連結(jié)并延長交橢圓于,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 和點(diǎn),動圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)點(diǎn)是曲線與軸正半軸的交點(diǎn),點(diǎn), 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com