《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書中有這樣的一道題目:把個面包分給個人,使每人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小份為(    )

A.         B.                    C.                      D. 

 

【答案】

C

【解析】

試題分析:設(shè)這個等差數(shù)列為,且這5項分別為,由條件

,∴,又使較大的三份之和的是較小的

兩份之和,∴,解得,則數(shù)列的最小項為

,故選C.

考點:等差數(shù)列的性質(zhì)在實際生活中的運用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

《萊因德紙草書》( Rhind  Papyrus )是世界上最古老的數(shù)學(xué)著作之一. 書中有一道這樣的題目:把100個面包分給5個人,使每個所得成等差數(shù)列,且使最大的三份之和的
17
是較小的兩份之和,則最小1份的量為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個面包分給五個人,使每人所得成等差數(shù)列,且使較大的三份之和的
1
7
是較小的兩份之和,問最小1份為( 。
A、
5
3
B、
10
3
C、
5
6
D、
11
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的題目:把120個面包分給5個人,使每個人所得面包數(shù)成等差數(shù)列,且較多的三份面包數(shù)之和的
17
是較少的兩份面包數(shù)之和,問最少的一份面包數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書中有這樣的一道題目:把個面包分給個人,使每人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的份為

A.               B.              C.               D.

 

查看答案和解析>>

同步練習(xí)冊答案