已知A、B分別是直線上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)過點(diǎn)N(1,0)作與x軸不垂直的直線l,交曲線C于P、Q兩點(diǎn),若在線段ON上存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形,試求m的取值范圍.
【答案】分析:(1)先設(shè)出D與A,B的坐標(biāo),用中點(diǎn)坐標(biāo)公式把點(diǎn)D表示出來,再代入弦長(zhǎng)公式即可得動(dòng)點(diǎn)D的軌跡C的方程;
(2)把直線方程與軌跡C的方程聯(lián)立求出與P、Q兩點(diǎn)的坐標(biāo)有關(guān)的等量關(guān)系,進(jìn)而求出PQ的中點(diǎn)坐標(biāo),再利用菱形的對(duì)角線互相垂直即可求出m的取值范圍.
解答:解:(1)設(shè)
∵D是線段AB的中點(diǎn),∴.(2分)
∵|AB|=,∴+=12,

化簡(jiǎn)得點(diǎn)D的軌跡C的方程為.(5分)
(2)設(shè)l:y=k(x-1)(k≠0),代入橢圓,得(1+9k2)x2-18k2x+9k2-9=0,∴,∴.(7分)
∴PQ中點(diǎn)H的坐標(biāo)為
∵以MP、MQ為鄰邊的平行四邊形是菱形,∴kMH•k=-1,
,即.(9分)
∵k≠0,∴.(11分)
又點(diǎn)M(m,0)在線段ON上,∴0<m<1.
綜上,.(12分)
點(diǎn)評(píng):本小題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與圓錐曲線的相關(guān)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B分別是直線y=
3
3
x
y=-
3
3
x
上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
3
,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)過點(diǎn)N(1,0)作與x軸不垂直的直線l,交曲線C于P、Q兩點(diǎn),若在線段ON上存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B分別是直線y=
3
3
x
y=-
3
3
x
上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
3
,P是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)Q(1,0)作直線l(與x軸不垂直)與軌跡C交于M、N兩點(diǎn),與y軸交于點(diǎn)R.若
RM
MQ
RN
NQ
,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B分別是直線y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
3
,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線l的方程;
②設(shè)點(diǎn)E(m,0)是x軸上一點(diǎn),求當(dāng)
PE
QE
恒為定值時(shí)E點(diǎn)的坐標(biāo)及定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B分別是直線y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
3
,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線l的方程;
②試問在x軸上是否存在點(diǎn)E(m,0),使
PE
QE
恒為定值?若存在,求出E點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B分別是直線y=
3
3
x
y=-
3
3
x
上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2
3
,P是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)Q(1,0)任意作直線l(與x軸不垂直),設(shè)l與(1)中軌跡C交于M、N,與y軸交于R點(diǎn).若
RM
MQ
RN
NQ
,證明:λ+μ 為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案