設{an}是遞增等差數(shù)列,前三項和為12,前三項積為48,則它的首項是

[  ]

A.1

B.2

C.4

D.6

答案:B
解析:


提示:

這組題主要考查等差數(shù)列的通項公式和前n項和的公式,同時還用到等差數(shù)列的等和性:如果m+n=P+q,那么am+an=ap+aq


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=anlog
12
an,求數(shù)列{bn}
的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且an與1的等差中項等于Sn與1的等比中項.
(1)求a1的值及數(shù)列{an}的通項公式;
(2)設bn=
2
1+an
 
+(-1)n-1×2n+1λ
,若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設bn=-nan,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設單調(diào)遞增等比數(shù)列{an}滿足a1+a2+a3=7,且a3是a1,a2+5的等差中項,
(1)求數(shù)列{an}的通項;
(2)數(shù)列{cn}滿足:對任意正整數(shù)n,
c1
a1
+
c2
a2
+…+
cn
an
=22+
2n-11
2n-1
均成立,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項
①求數(shù)列{an}的通項公式;
②設bn=anlog2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案