精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=
3
,D,E分別是AC1和BB1的中點(diǎn),則直線DE與平面BB1C1C所成的角為(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2
分析:根據(jù)題意得ED∥BF,進(jìn)而得到直線DE與平面BB1C1C所成的角等于直線BF與平面BB1C1C所成的角.利用幾何體的結(jié)構(gòu)特征得到∠FBG=
π
6
.即可得到答案.
解答:解:取AC的中點(diǎn)為F,連接BF、DF.
因為在直三棱柱ABC-A1B1C1中,CC1∥BB1,又因為DF是三角形ACC1的中位線,故DF=
1
2
CC1=
1
2
BB1=BE,故四邊形BEDF是平行四邊形,所以ED∥BF.
精英家教網(wǎng)
過點(diǎn)F作FG垂直與BC交BC與點(diǎn)G,由題意得∠FBG即為所求的角.
因為AB=1,AC=2,BC=
3
,所以∠ABC=
π
2
,∠BCA=
π
6
,直角三角形斜邊中線BF是斜邊AC的一半,故BF=
1
2
AC=CF,所以
∠FBG=∠BCA=
π
6

故選A.
點(diǎn)評:解決此類問題的關(guān)鍵是熟悉線面角的作法,即由線上的一點(diǎn)作平面的垂線再連接斜足與垂足則得到線面角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊答案