【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖是一個底邊長為6、高為4的等腰三角形.

(1)求該幾何體的體積;

(2)求該幾何體的表面積.

【答案】(1)64;(2)

【解析】試題分析:由題設(shè)可知,幾何體是一個高為4的四棱錐,其底面是長、寬分別為86的矩形,正側(cè)面及其相對側(cè)面均為底邊長為8,高為的等腰三角形,左、右側(cè)面均為底邊長為6、高為的等腰三角形,分析出圖形之后,再利用公式求解即可.

試題解析:由已知可得該幾何體是一個底面為矩形,高為4,頂點在底面的射影是矩形中心的

四棱錐V-ABCD ;

1

2)該四棱錐有兩個側(cè)面VAD、VBC是全等的等腰三角形,且BC邊上的高為,另兩個側(cè)面VABVCD也是全等的等腰三角形,

AB邊上的高為

因此

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A,B分別在射線CM,CN(不含端點C)上運動,∠MCN= ,在△ABC中,角A,B,C所對的邊分別是a,b,c
(1)若a,b,c依次成等差數(shù)列,且公差為2,求c的值:
(2)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、分別是橢圓的左頂點、右焦點,點為橢圓上一動點,當軸時, .

(1)求橢圓的離心率;

(2)若橢圓存在點,使得四邊形是平行四邊形(點在第一象限),求直線的斜率之積;

(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過點作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點為、,直線的橫、縱截距分別為、,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 ),設(shè)為圓軸負半軸的交點,過點作圓的弦,并使弦的中點恰好落在軸上.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)延長交曲線于點,曲線在點處的切線與直線交于點,試判斷以點為圓心,線段長為半徑的圓與直線的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為 1, 的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).

①當時, 為四邊形;②當時, 為等腰梯形;③當時, 為六邊形;④當時, 的面積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級一次數(shù)學考試后,為了解學生的數(shù)學學習情況,隨機抽取學生的數(shù)學成績,制成表所示的頻率分布.

組號

分組

頻數(shù)

頻率

第一組

第二組

第三組

第四

第五組

合計

(1)、值;

(2)若從第三、四、五中用分層抽樣方法抽取學生,在這學生中隨機抽取學生與張老師面談求第三組中至少有學生與張老師面談的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)請畫出該幾何體的三視圖;
(2)求四棱錐B﹣CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過點A(﹣3,4)
(1)若l與直線y=﹣2x+5平行,求其一般式方程;
(2)若l與直線y=﹣2x+5垂直,求其一般式方程;
(3)若l與兩個坐標軸的截距之和等于12,求其一般式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市計劃銷售某種產(chǎn)品,先試銷該產(chǎn)品天,對這天日銷售量進行統(tǒng)計,得到頻率分布直方圖如圖.

(Ⅰ)若已知銷售量低于50的天數(shù)為23,求;

(Ⅱ)廠家對該超市銷售這種產(chǎn)品的日返利方案為:每天固定返利45元,另外每銷售一件產(chǎn)品,返利3元;頻率估計為概率.依此方案,估計日返利額的平均值.

查看答案和解析>>

同步練習冊答案