設A是半徑為1的圓周上一定點,P是圓周上一動點,則弦PA<1的概率是(  )
A、
1
3
B、
2
3
C、
1
6
D、
1
2
考點:幾何概型
專題:概率與統(tǒng)計
分析:根據(jù)已知中A是圓上固定的一定點,在圓上其他位置任取一點P,連接A、P兩點,它是一條弦,我們求出B點位置所有基本事件對應的弧長,及滿足條件PA長小于1的基本事件對應的弧長,代入幾何概型概率計算公式,即可得到答案.
解答: 解:在圓上其他位置任取一點P,圓半徑為1,
則P點位置所有情況對應的弧長為圓的周長2π,
其中滿足條件PA<1的對應的弧長為
1
3
•2π•1,
則AB弦的長度大于等于半徑長度的概率P=
3
=
1
3

故選:A.
點評:本題考查的知識點是幾何概型,其中根據(jù)已知條件計算出所有基本事件對應的幾何量及滿足條件的基本事件對應的幾何量是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知曲線f(x)=ax-ex(a>0).
(Ⅰ)求曲線在點(0,f(0))處的切線;
(Ⅱ)若存在實數(shù)x0使得f(x0)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為坐標原點,點M的坐標為(1,-1),點N(x,y)的坐標x,y滿足
x+2y-3≤0
x+3y-3≥0
y≤1
,則
OM
ON
<0的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰直角三角形ABC中,在斜邊AB上找一點M,則AM<AC的概率為(  )
A、
2
2
B、
3
4
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={-2,-1,0,1,2,3,4,5,6},集合M={大于-1且小于4的整數(shù)},則∁UM=(  )
A、∅
B、{-2,-1,5,6}
C、{0,1,2,3,4}
D、{-2,-1,4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個命題中,正確的是(  )
A、△ABC為直角三角形的充要條件是
AB
AC
=0
B、若
OP
=
1
2
OA
+
1
3
OB
,則P、A、B三點共線
C、若{
a
,
b
,
c
}
為空間的一個基底,則{
a
+
b
,
b
+
c
,
c
+
a
}
也構成空間的一個基底
D、|(
a
b
)•
c
|=|
a
|•|
b
|•|
c
|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-2,3]上任取一個數(shù)a,則函數(shù)f(x)=x2-2ax+a+2有零點的概率為( �。�
A、
1
3
B、
1
2
C、
3
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+lnx(a∈R)
(Ⅰ)當a=2時,求f(x)在區(qū)間[e,e2]上的最大值和最小值;
(Ⅱ)如果函數(shù)g(x),f1(x),f2(x)在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),f2(x)的“伴隨函數(shù)”.已知函數(shù)f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx
,f2(x)=
1
2
x2+2ax
.若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“伴隨函數(shù)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且離心率e=
1
2
,若點P為橢圓C上的一個動點,且|PF1|•|PF2|的最大值為4.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得以PM、PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
关 闭