(13分) 已知圓,內(nèi)接于此圓,點(diǎn)的坐標(biāo),為坐標(biāo)原點(diǎn).
(Ⅰ)若的重心是,求直線的方程;
(Ⅱ)若直線與直線的傾斜角互補(bǔ),求證:直線的斜率為定值.
(1).(2).
【解析】(I) 設(shè),再由重心坐標(biāo)公式可知,可得BC的中點(diǎn)坐標(biāo),再由,作差可得,可得BC的斜率,進(jìn)而得到BC的方程.
(2)設(shè):,代入圓的方程整理得:
由于3是上述方程的一個(gè)根,再根據(jù)韋達(dá)定理可得另一個(gè)根,同理可得:從而可求出
解:設(shè)
由題意可得: 即……2分 又
相減得:
∴ …………………4分
∴直線的方程為,即.………………6分
(2)設(shè):,代入圓的方程整理得:
∵是上述方程的兩根
∴ ……………9分
同理可得: ……………11分
∴. ……………………13
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(13分) 已知圓,內(nèi)接于此圓,點(diǎn)的坐標(biāo),為坐標(biāo)原點(diǎn).
(Ⅰ)若的重心是,求直線的方程;
(Ⅱ)若直線與直線的傾斜角互補(bǔ),求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓,內(nèi)接于此圓W#W$W%.K**S*&5^U,點(diǎn)的坐標(biāo),為坐標(biāo)原點(diǎn).
⑴若的重心是,求直線的方程;
⑵若直線與直線的傾斜角互補(bǔ),求證:直線的斜率為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com