在邊長為2的正三角形ABC中,以A為圓心,為半徑畫一弧,分別交AB,AC于D,E.若在△ABC這一平面區(qū)域內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是________.

 

【答案】

【解析】

試題分析:依題意,S△ABC==

以A為圓心,為半徑畫一弧所得扇形面積, S=,

則豆子落在扇形ADE內(nèi)的概率P=,

故答案為:

考點:幾何概型概率的計算,扇形、三角形面積計算。

點評:中檔題,幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關,而與形狀和位置無關。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在邊長為2的正三角形ABC中,以A為圓心,
3
為半徑畫一弧,分別交AB,AC于D,E.若在△ABC這一平面區(qū)域內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為2的正三角形內(nèi)隨機地取一點,則該點到三角形各頂點的距離均不小于1的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為
2
的正三角形ABC中,設
AB
=
c
BC
=
a
,
CA
=
b
,則
a
b
+
b
c
+
c
a
等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為
2
的正三角形ABC中,設
AB
=c,
BC
=a,
CA
=b
,則a•b+b•c+c•a=
-3
-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為2的正三角形ABC中,
AB
BC
+
BC
CA
+
CA
AB
等于(  )

查看答案和解析>>

同步練習冊答案