在△ABC中,D為BC中點,若∠A=120°,
AB
AC
=-1,則|
AD
|的最小值是
 
分析:由題意表示出
AD
,通過向量的數(shù)量積以及基本不等式求出|
AD
|的最小值.
解答:解:由題D為BC中點,故
AD
=
1
2
AB
+
AC
),再由∠A=120°,
AB
AC
=-1,
可得
|AB
|•|
AC|
=2.
所以|
AD
|
2=
1
4
AB
+
AC
2=
1
4
(|
AB
|2+|
AC
|2+2
AB
AC
)≥
1
4
(2|
AB
|•|
AC
|-2)=
1
2

故|
AD
|的最小值為
1
2
=
2
2
,
故答案為:
2
2
點評:本題主要考查兩個向量的加減法的法則,以及其幾何意義,兩個向量的數(shù)量積的定義,基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為BC的中點,已知
AB
=
a
,
AC
=
b
,則下列向量一定與
AD
同向的是( 。
A、
a
+
b
|
a
+
b
|
B、
a
|
a
|
+
b
|
b
|
C、
a
-
b
|
a
-
b
|
D、
a
|
a
|
-
b
|
b
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,D為邊AB上一點,DA=DC.已知B=
π
4
,BC=1.
(Ⅰ)若DC=
6
3
,求角A的大;
(Ⅱ)若△BCD面積為
1
6
,求邊AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為邊BC上的一點,BD=
1
2
DC
,∠ADB=120°,AD=2,若△ADC的面積為3-
3
,則∠BAC=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為BC中點,a,b,c成等差數(shù)列且a+c=8,cosB=
3
5
,a>c
,則
AD
BC
等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為BC邊中點,∠B+∠DAC=90°,判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊答案