已知奇函數(shù)f(x)在區(qū)間(0,+∞)是增函數(shù),則函數(shù)g(x)=f(|x|-1)的圖象可能為


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:根據(jù)函數(shù)的單調(diào)性排除不滿足題意的選項,由函數(shù)的表達式g(x)=f(|x|-1)知其與函數(shù)y=f(x)的圖象的關(guān)系,確定函數(shù)的圖象特點,利用排除法推出正確結(jié)果.
解答:當(dāng)x>0時,g(x)=f(|x|-1)=f(x-1),
∵f(x)在區(qū)間(0,+∞)是增函數(shù)
g(x)在(1,+∞)上是增函數(shù),
故排除B,D.
根據(jù)奇函數(shù)f(x)在區(qū)間(0,+∞)是增函數(shù)得:
f(x)在區(qū)間(-∞,0)是減函數(shù),
∴當(dāng)1>x>0時,g(x)=f(|x|-1)=f(x-1)在(0,1)上是減函數(shù),排除A,
則函數(shù)g(x)=f(|x|-1)的圖象可能為C,
故選C
點評:本題是基礎(chǔ)題,考查讀圖能力,發(fā)現(xiàn)問題解決問題的能力,排除方法的應(yīng)用,結(jié)合函數(shù)的單調(diào)性是解題的關(guān)鍵,好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知奇函數(shù)f(x)在x≥0時的圖象是如圖所示的拋物線的一部分,
(1)求函數(shù)f(x)的表達式,
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在[-1,0]上單調(diào)遞減,又α,β為銳角三角形的兩內(nèi)角,則有( 。
A、f(sinα-sinβ)≥f(cosα-cosβ)B、f(sinα-cosβ)>f(cosα-sinβ)C、f(sinα-cosβ)≥f(cosα-sinβ)D、f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞增,且f(2x-1)+f(
1
2
)<0,則x的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1};
④在極坐標(biāo)系中,圓ρ=-4cosθ的圓心的直角坐標(biāo)是(-2,0).
其中正確的是
②,④
②,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞減,且f(3-a)+f(1-a)<0,則a的取值范圍是
(-∞,2)
(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案