若存在,使得不等式成立,則實(shí)數(shù)的取值范圍為_____.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,Sn為其前n項(xiàng)和,且滿足S2=4,S5=25,數(shù)列{bn}滿足bn=
1an-an+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)模擬)已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前 n項(xiàng)和,且滿足
a
2
n
=S2n-1
,n∈N*.?dāng)?shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an和數(shù)列{bn}的前n項(xiàng)和Tn;
(2)若對(duì)任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足an2=S2n-1,n∈N*.?dāng)?shù)列{bn}滿足bn=
1anan+1
,n∈N*,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an和數(shù)列{bn}的前n項(xiàng)和Tn;
(2)若對(duì)任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
數(shù)列{an}滿足an=f(n)(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)x軸、直線x=a與函數(shù)y=f(x)的圖象所圍成的封閉圖形的面積為S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整數(shù)N,使得不等式an-1005>S(n)-S(n-1)對(duì)一切n>N恒成立?若存在,則這樣的正整數(shù)N共有多少個(gè)?并求出滿足條件的最小的正整數(shù)N;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標(biāo)高二上學(xué)期數(shù)學(xué)單元測試4 題型:解答題

 

    (理)如圖,平面ADEF⊥平面ABCD,ABCD與ADEF均為矩形,且AB:AD:AF=

 
2:2:;P為線段EF上一點(diǎn),M為AB的中點(diǎn),若PC與BD所成的角為

60°.

   (1)試確定P點(diǎn)位置;

   (2)求二面角P—MC—D的大小的余弦值;

   (3)當(dāng)AB長為多少時(shí),點(diǎn)D到平面PMC的距離等于

 

 

 

 

(文)設(shè)函數(shù)),其中

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),求函數(shù)的極大值和極小值;

(Ⅲ)當(dāng)時(shí),證明存在,使得不等式對(duì)任意的恒成立.

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案