已知A、B、C是直線上的不同三點,O是外一點,向量滿足,記;
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.
(1);(2)單調(diào)增區(qū)間為

試題分析:(1)利用平面向量基本定理求解;(2)由(1)得解析式,然后利用導(dǎo)數(shù)求解單調(diào)增區(qū)間.
試題解析:(1)∵ ,且A、B、C是直線上的不同三點,
, 
;    
(2)∵,∴,  ∵的定義域為,而上恒正, ∴上為增函數(shù),
的單調(diào)增區(qū)間為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè).
(1)請寫出的表達式(不需證明);
(2)求的極小值;
(3)設(shè)的最大值為,的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在半徑為、圓心角為的扇形的弧上任取一點,作扇形的內(nèi)接矩形,使點上,點上,設(shè)矩形的面積為,

(Ⅰ)按下列要求求出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式;
(Ⅱ)請你選用(1)中的一個函數(shù)關(guān)系式,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

定義在上的函數(shù)對任意都有為常數(shù)).
(1)判斷為何值時為奇函數(shù),并證明;
(2)設(shè),上的增函數(shù),且,若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

我省某景區(qū)為提高經(jīng)濟效益,現(xiàn)對某一景點進行改造升級,從而擴大內(nèi)需,提高旅游增加值,經(jīng)過市場調(diào)查,旅游增加值萬元與投入萬元之間滿足:
為常數(shù)。當萬元時,萬元;
萬元時,萬元。 (參考數(shù)據(jù):
(1)求的解析式;
(2)求該景點改造升級后旅游利潤的最大值。(利潤=旅游增加值-投入)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

記定義在R上的函數(shù)的導(dǎo)函數(shù)為.如果存在,使得成立,則稱為函數(shù)在區(qū)間上的“中值點”.那么函數(shù)在區(qū)間[-2,2]上“中值點”的為____  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的最小值是              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),若,則          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則等于                        (    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案