解:(1)∵當x>0時,f(x)=e
x-1在上單調(diào)遞增,且f(x)=e
x-1>0
當x≤0時,f(x)=
x
3+mx
2,此時f′(x)=x
2+2mx=x(x+2m)
①當m=0時,f′(x)=x
2≥0,則f(x)=
x
3在(-∞,0】上單調(diào)遞增且f(x)=
x
3≤0,又f(0)=0,可知函數(shù)f(x)在R上單調(diào)遞增,故無極值.
②當m<0時同理,函數(shù)f(x)在R上單調(diào)遞增,故無極值
③當m>0時,令f′(x)=x(x+2m)>0,得x>0或x<-2m.此時函數(shù)f(x)=
x
3+mx
2在(-∞,-2m]上單調(diào)遞增,在(-2m,0]上單調(diào)遞減.
∴函數(shù)在f(x)x=-2m處取得極大值f(-2m)=
m
3+4m
3=
m
3>0;
又∵f(x)在(0,+∞)上單調(diào)遞增,故函數(shù)f(x)在x=0處取得極小值f(0)=0.
綜上可知:當m>0時,f(x)的極大值為
m
3,極小值為0;當m≤時,f(x)無極值
(2)當x>0時,設(shè)y=f(x)=e
x-1則x=ln(y+1)
∴f
-1(x)=ln(x+1)(x>0)
①比較f(q-p)與f
-1(q-p)的大。
記g(x)=f(x)-f
-1(x)=e
x-ln(x+1)-1(x>0)
∵當x>0時,有g(shù)′(x)>g′(0)=0恒成立.
∴函數(shù)g(x)在(0,+∞)上單調(diào)遞增,又因為g(x)在x=0處連續(xù)
∴當x>0時,有g(shù)(x)>g(0)=e
0-ln(0+1)-1=0
當0<p<q時,有p-p>0,
∴g(q-p)=f(q-p)-f
-1(q-p)>0,即f(q-p)>f
-1(q-p)
②比較f
-1(q-p)與f
-1(q)-f
-1(p)的大小
∵f
-1(q-p)-[f
-1(q)-f
-1(p)]=ln(q-p+1)-ln(q+1)+ln(p+1)
∵0<p<q,∴
+1>1,
∴l(xiāng)n[
+1]>0
∴g(q-p)>f(q)-f
-1(p)
由①②可知,當0<p<q時,有f(q-p)>f
-1(q-p)>f
-1(q)-f
-1(p)
分析:(1)求函數(shù)f(x)的導(dǎo)數(shù),由于導(dǎo)數(shù)中存在參數(shù)m,其取值范圍的不同會造成函數(shù)的單調(diào)區(qū)間不同,極值的存在與否不同,故需要對參數(shù)m分類討論,在每一類中求函數(shù)的極值;
(2)觀察題設(shè),要比較大小的幾個數(shù)值的函數(shù)名不同,不易借助同一個函數(shù)的單調(diào)性來進行判斷,本題采取了構(gòu)造一個新函數(shù)的方法,借用新函數(shù)的單調(diào)性來比較兩數(shù)的大小,對于函數(shù)名相同的兩個數(shù)值大小的比較,直接作差即可.
點評:本題考點是利用導(dǎo)數(shù)研究函數(shù)的極值,考查了函數(shù)極值存在的條件,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及利用單調(diào)性比較大小,本題也涉及了對數(shù)與指數(shù)的運算,故本題辭讓強,綜合性強,解答時注意體會本題問題的轉(zhuǎn)化技巧與方法.