已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足an+Sn=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證數(shù)列{an}中不存在任意三項(xiàng)按原來(lái)順序成等差數(shù)列;
(3)若從數(shù)列{an}中依次抽取一個(gè)無(wú)限多項(xiàng)的等比數(shù)列,使它的所有項(xiàng)和S滿(mǎn)足,這樣的等比數(shù)列有多少個(gè)?
解:(1)當(dāng)n=1時(shí),a1+S1=2a1=2,則a1=1.
又an+Sn=2,
∴a n+1+S n+1=2,
兩式相減得,
∴{an}是首項(xiàng)為1,公比為的等比數(shù)列,

(2)反證法:假設(shè)存在三項(xiàng)按原來(lái)順序成等差數(shù)列,記為ap+1,aq+1,ar+1(p<q<r)
,
∴22 r﹣q=2 r﹣p+1(*)
又∵p<q<r
∴r﹣q,r﹣p∈N*
∴(*)式左邊是偶數(shù),右邊是奇數(shù),等式不成立
∴假設(shè)不成立原命題得證.
(3)設(shè)抽取的等比數(shù)列首項(xiàng)為,公比為,項(xiàng)數(shù)為k,
且滿(mǎn)足m,n,k∈N,m≥0,n≥1,k≥1,

又∵

整理得:
∵n≥1
∴2m﹣n≤2m﹣1.

∴m≤4


∴m≥4
∴m=4將m=4代入①式,整理得
∴n≤4
經(jīng)驗(yàn)證得n=1,2不滿(mǎn)足題意,n=3,4滿(mǎn)足題意
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿(mǎn)足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案