16、某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個(gè)點(diǎn)A、B、C、A1、B1、C1上各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個(gè)的安裝方法共有
216
種(用數(shù)字作答).
分析:先安排底面的顏色,再分類計(jì)數(shù),A,B1分類,①A,B1同,B處3種,C處1種,②A,B1不同,A處3,B處2種,C處1種,由分類計(jì)數(shù)原理得上底面共9種,由分步類計(jì)數(shù)原理得結(jié)果.
解答:解:A1處4種,B1處3種,C1處2種則底面共4×3×2=24,
A,B1分類,A,B1同,B處3種,C處1種,則共有3種,
A,B1不同,A處2,B處2種,C處1種,
則共有2×2=4種,
由分類計(jì)數(shù)原理得上底面共7種,
由分步類計(jì)數(shù)原理得共有24×7=168種
點(diǎn)評(píng):本題用到兩個(gè)計(jì)數(shù)原理,用兩個(gè)計(jì)數(shù)原理解決計(jì)數(shù)問題時(shí),最重要的是在開始計(jì)算之前要進(jìn)行仔細(xì)分析要完成的“一件事”是什么,可以“分類”還是需要“分步”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在三棱柱ABC-A1B1C1的6個(gè)點(diǎn)A、B、C、A1、B1、C1上各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個(gè)的安裝方法共有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個(gè)點(diǎn)A、B、C、A1、B1、C1上各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個(gè)的安裝方法共有( 。┓N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)上各安裝一個(gè)燈泡,要求同一條線段的兩端的燈泡顏色不同,則每種顏色的燈泡至少用一個(gè)的安裝方法共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:填空題

某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在 如圖所示的三棱臺(tái)6個(gè)頂點(diǎn),,,,上  各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則不同的安裝方法共有        種(用數(shù)字作答).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案