在平面四邊形ABCD中,AB=BC=CD=a,∠B=90°,∠BCD=135°,沿對(duì)角線AC將四邊形折成直二面角,如圖所示:

(Ⅰ)求證:AB⊥平面BCD;
(Ⅱ)求二面角B-AD-C的平面角的余弦值.
考點(diǎn):二面角的平面角及求法,直線與平面垂直的判定
專(zhuān)題:空間位置關(guān)系與距離,空間角
分析:(I)由平面幾何知識(shí),不難算出∠ACD=90°,從而AC⊥CD.因?yàn)槎娼荁-AC-D為直二面角,結(jié)合CD⊥AC,可得DC⊥平面ABC,得到CD⊥AB,最后根據(jù)線面垂直的判定定理,得到AB⊥平面BCD;
(II)設(shè)AC的中點(diǎn)為O,連接BO,過(guò)O作OE⊥AD于E,可證∠BEO為二面角B-AD-C的平面角,解直角三角形BEO,可求此角的大小,即可得出結(jié)論.
解答: (I)證明:∵∠B=90°,∴AB⊥BC.
∵AB=BC,∴∠BCA=∠BAC=45°.(1分)
又平面四邊形ABCD中,∠C=135°,
∴∠DCA=90°∴DC⊥AC(2分)
∵平面ABC⊥平面ACD,平面ABC∩平面ACD=AC,DC?平面ACD,
∴DC⊥平面ABC,∴AB⊥CD(4分)
∵DC∩BC=C,∴AB⊥平面BCD(5分)
∵AB?平面ABD,∴平面ABD⊥平面PCD.(6分)
(II)解:設(shè)AC的中點(diǎn)為O,連接BO,過(guò)O作OE⊥AD于E,連接BE.
∵AB=BC,O為AC中點(diǎn).∴BO⊥AC,(7分)
∵平面ABC⊥平面ACD,平面ABC∩平面ACD=AC,
BO?平面ABC,∴BO⊥平面ACD.(8分)
∵OE⊥AD,
∴BE⊥AD,∴∠BEO為二面角B-AD-C的平面角.(10分)
在Rt△ABC中,BO=
2
2
,AC=
2

∴在Rt△DCA中,AD=
3
,∴OE=
6
6
.(11分)
∴在Rt△BOE中,tan∠BEO=
BO
OE
=
3
,∴∠BEO=60°(13分)
∴二面角B-AD-C的大小為60°,
∴其余弦值為
1
2
(14分)
點(diǎn)評(píng):證明兩個(gè)平面垂直,關(guān)鍵在一個(gè)面內(nèi)找到一條直線和另一個(gè)平面垂直,利用三垂線定理找出二面角的平面角,解三角形求出此角
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2+bx+c(b,c∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<m的解集為(n,n+10),則實(shí)數(shù)m的值為( 。
A、25B、-25
C、50D、-50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=1,an+1=an+
an
n+1
,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是淮北市6月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇6月1日至6月15日中的某一天到達(dá)該市,并停留2天.

(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(2)若設(shè)X是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),請(qǐng)分別求當(dāng)x=0時(shí),x=1時(shí)和x=3時(shí)的概率值.
(3)由圖判斷從哪天開(kāi)始淮北市連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
,B1C1∥BC且B1C1=
1
2
BC
,二面角A1-AB-C是直二面角
(1)求證:A1B1⊥平面AA1C;
(2)求證:AB1∥平面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O1和⊙O2交于點(diǎn)C和D,⊙O1上的點(diǎn)P處的切線交⊙O2于A、B點(diǎn),交直線CD于點(diǎn)E,M是⊙O2上的一點(diǎn),若PE=2,EA=1,∠AMB=30°,求⊙O2的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知bsinA=
3
acosB,b=3,
(1)求B
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:x2-x+a-a2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱柱的體對(duì)角線長(zhǎng)為3cm,表面積為16cm2,則它的體積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案