橢圓
的焦點(diǎn)
和
,點(diǎn)P在橢圓上,如果線段
的中點(diǎn)在
軸
上,那么
的值為( )
本題考查橢圓定義,幾何性質(zhì),平面幾何知識(shí)及運(yùn)算.
因?yàn)榫段
的中點(diǎn)在
軸上,
是
的中點(diǎn),所以
的邊
即
時(shí)直角三角形,且
由橢圓定義得:
又
由(1),(2)解得
故選A
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在
上有一點(diǎn)
,它到
的距離與它到焦點(diǎn)的距離之和最小,則點(diǎn)
的坐標(biāo)是( )
A.(-2,1) | B.(1,2) | C.(2,1) | D.(-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)斜率為2的直線
l過拋物線
y2=
ax(
a≠0)的焦點(diǎn)
F,且和
y軸交于點(diǎn)
A,若△
OAF(
O為坐標(biāo)原點(diǎn))的面積為4,則拋物線的方程為( )
A.y2=±4x | B.y2=±8 | C.y2=4x | D.y2=8x |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)從圓
:
外一動(dòng)點(diǎn)
向圓
引一條切線,切點(diǎn)為
,且
(
為坐標(biāo)原點(diǎn)),求
的最小值和
取得最小值時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
的準(zhǔn)線過雙曲線
的一個(gè)焦點(diǎn),則雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,點(diǎn)
分別是橢圓的左、右焦點(diǎn),在直線
(
分別為橢圓的長半軸和半焦距的長)上的點(diǎn)
,滿足線段
的中垂線過點(diǎn)
.過原點(diǎn)
且斜率均存在的直線
、
互相垂直,且截橢圓所得的弦長分別為
、
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)求
的最小值及取得最小值時(shí)直線
、
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是橢圓
的左、右焦點(diǎn),過點(diǎn)
作
傾斜角為
的動(dòng)直線
交橢圓于
兩點(diǎn).當(dāng)
時(shí),
,且
.
(1)求橢圓的離心率及橢圓的標(biāo)準(zhǔn)方程;
(2)求△
面積的最大值,并求出使面積達(dá)到最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知橢圓
C1的中心在原點(diǎn)
O,長軸左、右端點(diǎn)
M,
N在
x軸上,橢圓
C2的短軸為
MN,且
C1,
C2的離心率都為
e,直線
l⊥MN,
l與
C1交于兩點(diǎn),與
C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為
A,
B,
C,
D.
(I)設(shè)
,求
與
的比值;
(II)當(dāng)
e變化時(shí),是否存在直線
l,使得
BO∥
AN,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在橢圓
(
a>
b>0)中,記左焦點(diǎn)為
F,右頂點(diǎn)為
A,短軸上方的端點(diǎn)為
B.若該橢圓的離心率是
,則∠
ABF= .
查看答案和解析>>