已知橢圓E:的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:過A,F(xiàn)2兩點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上.
(3)直線BC過坐標(biāo)原點(diǎn),與橢圓E相交于B,C,點(diǎn)Q為橢圓E上的一點(diǎn),若直線QB,QC的斜率kQB,kQC存在且不為0,求證:kQB•kQC為定植.
【答案】分析:(1)求出圓與x軸交點(diǎn)坐標(biāo),即可確定橢圓E的方程;
(2)確定tanβ、tanα,利用兩角差的正切公式,化簡(jiǎn)可得結(jié)論;
(3)求出直線QB,QC的斜率,利用點(diǎn)在橢圓上,代入作差,即可求得結(jié)論.
解答:(1)解:∵圓與x軸交點(diǎn)坐標(biāo)為,,
,∴b=3,
∴橢圓方程是:.…(4分)
(2)證明:設(shè)點(diǎn)P(x,y),因?yàn)镕1(-,0),F(xiàn)2,0),
所以=tanβ=,=tanα=
因?yàn)棣?α=,所以tan(β-α)=-
因?yàn)閠an(β-α)==,所以=-,
化簡(jiǎn)得x2+y2-2y=3,所以點(diǎn)P在定圓x2+y2-2y=3上.…(10分)
(3)證明:設(shè)B(m,n),Q(x′,y′),則C(-m,-n)
∴kQB•kQC==
,
∴兩式相減可得
=
∴kQB•kQC=…(12分)
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查兩角差的正切公式,考查斜率的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E:數(shù)學(xué)公式的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:數(shù)學(xué)公式過A,F(xiàn)2兩點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=數(shù)學(xué)公式時(shí),證明:點(diǎn)P在一定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E:數(shù)學(xué)公式的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:數(shù)學(xué)公式過A,F(xiàn)2兩點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=數(shù)學(xué)公式時(shí),證明:點(diǎn)P在一定圓上.
(3)直線BC過坐標(biāo)原點(diǎn),與橢圓E相交于B,C,點(diǎn)Q為橢圓E上的一點(diǎn),若直線QB,QC的斜率kQB,kQC存在且不為0,求證:kQB•kQC為定植.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市高三(上)質(zhì)量抽測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓E:的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:過A,F(xiàn)2兩點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市高三(上)9月質(zhì)量檢測(cè)數(shù)學(xué)試卷 (解析版) 題型:解答題

已知橢圓E:的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:過A,F(xiàn)2兩點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上.

查看答案和解析>>

同步練習(xí)冊(cè)答案