【題目】“辛卜生公式”給出了求幾何體體積的一種計算方法:夾在兩個平行平面之間的幾何體,如果被平行于這兩個平面的任何平面所截,截得的截面面積是截面高的(不超過三次)多項式函數(shù),那么這個幾何體的體積,就等于其上底面積、下底面積與四倍中截面面積的和乘以高的六分之一.即,式中,,,依次為幾何體的高、上底面積、下底面積、中截面面積.如圖,現(xiàn)將曲線與直線軸圍成的封閉圖形繞軸旋轉(zhuǎn)一周得到一個幾何體,則利用辛卜生公式可求得該幾何體的體積為(

A.B.C.D.16

【答案】B

【解析】

根據(jù)“辛卜生公式”:,根據(jù)旋轉(zhuǎn)體特點,結(jié)合已知即可得解.

解:由題意,該幾何體的高為時,其截面面積為

故可以利用辛卜生公式求該幾何體的體積.

由題意可知該幾何體中,,,

所以所求體積,

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到定點的距離比到定直線的距離小.

1)求點的軌跡的方程;

2)過點任意作互相垂直的兩條直線,,分別交曲線于點,,.設(shè)線段的中點分別為,,求證:直線恒過一個定點;

3)在(2)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為.

1)求直線l的普通方程和曲線C的直角坐標方程;

2)直線l與曲線C交于AB兩點,P(1,3),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

極坐標系中, 為極點,半徑為2的圓的圓心坐標為.

1)求圓的極坐標方程;

2)設(shè)直角坐標系的原點與極點重合, 軸非負關(guān)軸與極軸重合,直線的參數(shù)方程為為參數(shù)),由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代在珠算發(fā)明之前多是用算籌為工具來記數(shù)、列式和計算的.算籌實際上是一根根相同長度的小木棍,如圖,算籌表示數(shù)19的方法有兩種,即“縱式”和“橫式”,規(guī)定個位數(shù)用縱式,十位數(shù)用橫式,百位數(shù)用縱式,千位數(shù)用橫式,萬位數(shù)用縱式……依此類推,交替使用縱橫兩式.例如:27可以表示為“.如果用算籌表示一個不含“0”的兩位數(shù),現(xiàn)有7根小木棍,能表示多少個不同的兩位數(shù)( )

A.54B.57C.65D.69

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓C過點

(1)求橢圓C的標準方程;

(2)過橢圓C的右焦點的直線l與橢圓C交于AB兩點,且與圓:交于E、F兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C1ab0)的離心率為,右準線方程為x4,A,B分別是橢圓C的左,右頂點,過右焦點F且斜率為kk0)的直線l與橢圓C相交于MN兩點(其中,Mx軸上方).

1)求橢圓C的標準方程;

2)設(shè)線段MN的中點為D,若直線OD的斜率為,求k的值;

3)記△AFM,△BFN的面積分別為S1,S2,若,求M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌餐飲公司準備在10個規(guī)模相當?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個數(shù),先在其中5個地區(qū)試點,得到試點地區(qū)加盟店個數(shù)分別為1,2,3,4,5時,單店日平均營業(yè)額(萬元)的數(shù)據(jù)如下:

加盟店個數(shù)(個)

1

2

3

4

5

單店日平均營業(yè)額(萬元)

10.9

10.2

9

7.8

7.1

(1)求單店日平均營業(yè)額(萬元)與所在地區(qū)加盟店個數(shù)(個)的線性回歸方程;

(2)根據(jù)試點調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營業(yè)額預(yù)計值總和不低于35萬元,求一個地區(qū)開設(shè)加盟店個數(shù)的所有可能取值;

(3)小趙與小王都準備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個地區(qū)(加盟店都不少于2個)中隨機選一個地區(qū)加入,求他們選取的地區(qū)相同的概率.

(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.

1)求角;

2)若___________________(從下列問題中任選一個作答,若選擇多個條件分別解答,則按選擇的第一個解答計分).

的面積為,求的周長;

的周長為21,求的面積.

查看答案和解析>>

同步練習冊答案