設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a4=2a2+1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足
bn
an
=
1
2n
,n∈N*,設Tn為數(shù)列{bn}的前n項和,求Tn
考點:數(shù)列的求和,等差數(shù)列的性質
專題:等差數(shù)列與等比數(shù)列
分析:(1)求出數(shù)列的首項和公差,求數(shù)列{an}的通項公式;
(2)求出數(shù)列{bn}的通項公式,利用錯位相減法即可得到結論.
解答: 解:(1)設等差數(shù)列{an}的首項為a1,公差為d.
由S4=4S2,a4=2a2+1得
4a1+6d=8a1+4d
a1+3d=2a1+2d+1

解得a1=1,d=2.
因此an=2n-1,n∈N*
(2)由已知
bn
an
=
1
2n
,n∈N*
由(1)知an=2n-1,n∈N*,
所以bn=
2n-1
2n
,n∈N*
又Tn=
1
2
+
3
22
+
5
23
+…+
2n-1
2n
,
1
2
Tn=
1
22
+
3
23
+…+
2n-3
2n
+
2n-1
2n+1
,
兩式相減得
1
2
Tn=
1
2
+
1
22
+••+
1
2n-1
-
2n-1
2n+1
,
=
3
2
-
1
2n-1
-
2n-1
2n+1
,
所以Tn=3-
2n+3
2n
點評:本題主要考查等差數(shù)列的通項公式的計算,以及利用錯位相減法進行求和.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an
1
1
,
2
1
1
2
,
3
1
,
2
2
,
1
3
,
4
1
3
2
,
2
3
,
1
4
,…,依它的前10項的規(guī)律,則a99+a100的值為( 。
A、
37
24
B、
7
6
C、
11
15
D、
7
15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=cosωx•sinωx+
3
cos2ωx-
3
2
(0<ω≤1),且滿足f(x+π)=f(x)
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求當x∈[-
π
12
,
12
]時,y=f(x)的取值范圍;
(Ⅲ)若關于x的方程3[f(x)]2+m•f(x)-1=0在x∈[-
π
12
,
12
]時有三個不相等實根,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2an(n≥2),且a1=1
①計算a2,a3,a4,a5;
②猜想an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=1和點M(1,4).
(1)過點M向圓O引切線,求切線的方程;
(2)求以點M為圓心,且被直線y=2x-8截得的弦長為8的圓M的方程;
(3)設P為(2)中圓M上任意一點,過點P向圓O引切線,切點為Q,試探究:平面內是否存在一定點R,使得
PQ
PR
為定值?若存在,請求出定點R的坐標,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①已知a+b=1,求證:a2+b2
1
4
;
②已知數(shù)列{an}的前n項和為Sn=2n2-3n-2,求證數(shù)列{
Sn
2n+1
}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=-an-(
1
2
n-1+2(n∈N*),數(shù)列{bn}滿足bn=2n•an
(1)求a1
(2)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(3)設cn=log2
n
an
,數(shù)列{
2
cncn+2
}的前n項和為Tn,求滿足Tn
25
21
(n∈N*)的n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

是否存在常數(shù)a,b 使得2+4+6+…+(2n)=an2+bn對一切n∈N*恒成立?若存在,求出a,b的值,并用數(shù)學歸納法證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinx+cosx+|sinx-cosx|的值域是
 

查看答案和解析>>

同步練習冊答案