16.若$\overrightarrow{a}$=(x,1),$\overrightarrow$=(4,x),$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x=( 。
A.0B.2C.-2D.2或-2

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,∴x2-4=0,解得x=±2.
故選:D.

點(diǎn)評(píng) 本題考查了向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,焦距是實(shí)軸長(zhǎng)的$\sqrt{2}$倍且過(guò)點(diǎn)(4,-$\sqrt{10}$)
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:點(diǎn)M在以F1F2為直徑的圓上;
(3)在(2)條件下,若M F2交雙曲線另一點(diǎn)N,求△F1MN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某校高三參加第一次診斷考試后,隨機(jī)抽取了10名學(xué)生的數(shù)學(xué)成績(jī)(單位:分),用莖葉圖列舉出來(lái)如圖.
(1)求抽取樣本的平均數(shù)$\overline{x}$和樣本方差s2
(2)對(duì)所有學(xué)生得成績(jī)統(tǒng)計(jì)發(fā)現(xiàn),數(shù)學(xué)成績(jī)X服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline{x}$,σ2近似為樣本方差s2,若從所有學(xué)生中隨機(jī)抽取1名,求該生數(shù)學(xué)成績(jī)?cè)冢?9.7,120.3)的概率.
附:$\sqrt{106}$≈10.30,P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)(1-2x)2013=a0+a1x+a2x2+…+a2013x2013 (x∈R).
(1)求a0+a1+a2+…+a2013的值;
(2)求a1+a3+a5+…+a2013的值;
(3)求|a0|+|a1|+|a2|+…+|a2013|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{4}{x}$
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在(2,+∞)上的單調(diào)性并予以證明;
(3)求f(x)在[3,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,且($\overrightarrow{a}$-3$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=35.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)設(shè)向量$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow$,當(dāng)λ∈[0,1]時(shí),求|$\overrightarrow{c}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)$f(x)=2\sqrt{3}{sin^2}x-{(sinx-cosx)^2}(x∈R)$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移$\frac{π}{3}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求$g(-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)a,b是不同的直線,α,β是不同的平面,則下列四個(gè)命題中錯(cuò)誤的是( 。
A.若a⊥b,a⊥α,b?α,則b∥αB.若a∥α,a⊥β,則α⊥β
C.若a⊥β,α⊥β,則a∥αD.若a⊥b,a⊥α,b⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題不正確的是( 。
A.若m⊥n,m⊥α,n?α,則n∥αB.若m⊥β,α⊥β,則m∥α或m?α
C.若m∥α,α∥β,則m∥βD.若m⊥n,m⊥α,n⊥β,則α⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案