已知函數(shù)
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅰ);(Ⅱ)

試題分析:(Ⅰ)先對(duì)函數(shù)求導(dǎo),求出函數(shù)的極值,根據(jù)函數(shù)在區(qū)間上存在極值,
所以 從而解得(Ⅱ)不等式恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題.
試題解析:
解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022421520797.png" style="vertical-align:middle;" />,則,          (2分)
當(dāng)時(shí),;當(dāng)時(shí),.
所以上單調(diào)遞增;在上單調(diào)遞減,
所以函數(shù)處取得極大值.                (4分)
因?yàn)楹瘮?shù)在區(qū)間上存在極值,
所以 解得                  (6分)
(Ⅱ)不等式即為 記
所以,        (9分)
,則
,,
上單調(diào)遞增,
,從而
上也單調(diào)遞增,所以
所以.                         (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程為
⑴求函數(shù)的解析式;
⑵若對(duì)于區(qū)間上任意兩個(gè)自變量的值都有,求實(shí)數(shù)的最小值;
⑶若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為正常數(shù).
(Ⅰ)若,且,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)若,且對(duì)任意都有,求的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求的延長線上,的延長線上,且對(duì)角線點(diǎn).已知米,米。

(1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當(dāng),的長度分別是多少時(shí),花壇的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證:,e是自然對(duì)數(shù)的底數(shù)).
提示:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線在點(diǎn) 處的切線與軸的交點(diǎn)橫坐標(biāo)為,則的值為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列求導(dǎo)正確的是
A.(x+)’=1+
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案