已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)在區(qū)間和上的增減性;
(3)若滿足:,試證明:.
(1)偶函數(shù),(2)在上是減函數(shù),在上是增函數(shù)(3)詳見解析.
解析試題分析:(1)判定函數(shù)奇偶性,首先判定函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再判斷與的相等或相反關(guān)系.本題定義域?yàn)橐磺袑?shí)數(shù),關(guān)于原點(diǎn)對(duì)稱.函數(shù)為分段函數(shù),需分類討論. 當(dāng)時(shí),,.當(dāng)時(shí),,.故為偶函數(shù).(2)利用定義研究函數(shù)單調(diào)性,需注重作差后的變形,關(guān)鍵是提取公因式,進(jìn)行因式分解,以便判斷符號(hào).(3)由于是同區(qū)間的兩個(gè)任意數(shù),所以只需證,從而本題實(shí)質(zhì)為求函數(shù)最值.由函數(shù)奇偶性及單調(diào)性知:
,所以成立.
試題解析:解:(1)∵當(dāng)時(shí),,∴
∴ 2分
∵當(dāng)時(shí),,∴
∴ 4分
∴對(duì)都有,故為偶函數(shù) 5分
(2)當(dāng)時(shí),
設(shè)且,則 7分
∴當(dāng)時(shí),即
當(dāng)時(shí),即 9分
∴函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù) 11分
(3)由(2)可知,當(dāng)時(shí):
若,則即
若,則即
∴當(dāng)時(shí),有 12分
又由(1)可知為偶函數(shù),∴當(dāng)時(shí),有 13分
∴若,時(shí),則, 14分
∴,即 15分
考點(diǎn):分段函數(shù)的奇偶性、單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知()
(1)若方程有3個(gè)不同的根,求實(shí)數(shù)的取值范圍;
(2)在(1)的條件下,是否存在實(shí)數(shù),使得在上恰有兩個(gè)極值點(diǎn),且滿足,若存在,求實(shí)數(shù)的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)若,試判斷并用定義證明函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求證函數(shù)存在反函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(a>b>0)的左焦為F,右頂點(diǎn)為A,上頂點(diǎn)為B,O為坐標(biāo)原點(diǎn),M為橢圓上任意一點(diǎn),過F,B,A三點(diǎn)的圓的圓心為(p,q).
(1).當(dāng)p+q≤0時(shí),求橢圓的離心率的取值范圍;
(2).若D(b+1,0),在(1)的條件下,當(dāng)橢圓的離心率最小時(shí),的最小值為,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
判斷下列對(duì)應(yīng)是否是從集合A到集合B的函數(shù).
(1) A=B=N*,對(duì)應(yīng)法則f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,對(duì)應(yīng)法則f:x→y,這里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],對(duì)應(yīng)法則f:x→y,這里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,對(duì)應(yīng)法則:對(duì)任意(x,y)∈A,(x,y)→z=x+3y,z∈B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)對(duì)任意的恒有成立.
(1)記如果為奇函數(shù),求b,c滿足的條件;
(2)當(dāng)b=0時(shí),記若在)上為增函數(shù),求c的取值范圍;
(3)證明:當(dāng)時(shí),成立;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)f(x)=2x2-2ax+3在區(qū)間[-1,1]上最小值記為g(a).
(1)求g(a)的函數(shù)表達(dá)式;
(2)求g(a)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)對(duì)于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-.
(1)求證:f(x)在R上是減函數(shù).
(2)求f(x)在[-3,3]上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com