A. | 3,4,5 | B. | 4,5,6 | C. | 2,4,5 | D. | 2,3,4 |
分析 由函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,可得f′(x)=3x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,必有△=4a2-12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有兩解且f(x)=x1或x2.再分別討論利用平移變換即可解出方程f(x)=x1或f(x)=x2根的個(gè)數(shù).
解答 解:∵函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,
∴f′(x)=3x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=4a2-12b>0.解得x1=-$\frac{a}{3}$+$\frac{\sqrt{{a}^{2}-3b}}{3}$,x2=-$\frac{a}{3}$-$\frac{\sqrt{{a}^{2}-3b}}{3}$,
而方程3(f(x))2+2af(x)+b=0的△1=△>0,
∴此方程有兩解且f(x)=x1或x2
由x2<f(x1)<x1,
畫出如圖,由f(x1)<x1,
可知方程f(x)=x1有3個(gè)根.
方程f(x)=x2有1個(gè)根,
則原方程共有4個(gè)根.
討論若x1=f(x2),即有f(x)=x1有2個(gè)根,
方程f(x)=x2有1個(gè)根,
則原方程共有3個(gè)根;
若x1>f(x2),即有f(x)=x1有1個(gè)根,
方程f(x)=x2有1個(gè)根,
則原方程共有2個(gè)根.
即有原方程可能有2,3,4個(gè)根.
故選:D.
點(diǎn)評 本題綜合考查了利用導(dǎo)數(shù)研究函數(shù)得單調(diào)性、極值及方程根的個(gè)數(shù)、平移變換等基礎(chǔ)知識(shí),考查了數(shù)形結(jié)合的思想方法、推理能力、分類討論的思想方法、計(jì)算能力、分析問題和解決問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {0} | C. | {1} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
時(shí)間(t) | 2 | 4 | 6 | 8 | 10 |
日銷售量(y) | 38 | 37 | 32 | 33 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3)為函數(shù)y=f(x)的遞增區(qū)間 | B. | (3,5)為函數(shù)y=f(x)的遞減區(qū)間 | ||
C. | 函數(shù)y=f(x)在x=0處取得極大值 | D. | 函數(shù)y=f(x)在x=5處取得極小值 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com