7.已知函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,若x2<f(x1)<x1,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)可能為( 。
A.3,4,5B.4,5,6C.2,4,5D.2,3,4

分析 由函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,可得f′(x)=3x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,必有△=4a2-12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有兩解且f(x)=x1或x2.再分別討論利用平移變換即可解出方程f(x)=x1或f(x)=x2根的個(gè)數(shù).

解答 解:∵函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,
∴f′(x)=3x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=4a2-12b>0.解得x1=-$\frac{a}{3}$+$\frac{\sqrt{{a}^{2}-3b}}{3}$,x2=-$\frac{a}{3}$-$\frac{\sqrt{{a}^{2}-3b}}{3}$,
而方程3(f(x))2+2af(x)+b=0的△1=△>0,
∴此方程有兩解且f(x)=x1或x2
由x2<f(x1)<x1,
畫出如圖,由f(x1)<x1,
可知方程f(x)=x1有3個(gè)根.
方程f(x)=x2有1個(gè)根,
則原方程共有4個(gè)根.
討論若x1=f(x2),即有f(x)=x1有2個(gè)根,
方程f(x)=x2有1個(gè)根,
則原方程共有3個(gè)根;
若x1>f(x2),即有f(x)=x1有1個(gè)根,
方程f(x)=x2有1個(gè)根,
則原方程共有2個(gè)根.
即有原方程可能有2,3,4個(gè)根.
故選:D.

點(diǎn)評 本題綜合考查了利用導(dǎo)數(shù)研究函數(shù)得單調(diào)性、極值及方程根的個(gè)數(shù)、平移變換等基礎(chǔ)知識(shí),考查了數(shù)形結(jié)合的思想方法、推理能力、分類討論的思想方法、計(jì)算能力、分析問題和解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合$M=\{x|{x^2}=x\},N=\{x|\frac{x}{x-1}≥0\}$,則M∩N=( 。
A.B.{0}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD為直角梯形,∠BAD=∠ADC=90°,AP=AD=2CD=1,AB=2,PA⊥平面ABCD.
(1)求證:平面PBD⊥平面PAC;
(2)若側(cè)棱PB上存在點(diǎn)Q,使得VP-ACD:VQ-ABC=1:2,求二面角Q-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)Sn為各項(xiàng)不相等的等差數(shù)列an的前n 項(xiàng)和,已知a3a8=3a11,S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,數(shù)列{bn}的前n 項(xiàng)和為Tn,求$\frac{{a}_{n+1}}{{T}_{n}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某商場對A 商品近30 天的日銷售量y(件)與時(shí)間t(天)的銷售情況進(jìn)行整理,得到如下數(shù)據(jù)經(jīng)統(tǒng)計(jì)分析,日銷售量y(件)與時(shí)間t(天)之間具有線性相關(guān)關(guān)系.
 時(shí)間(t) 2 4 6 8 10
 日銷售量(y) 38 37 32 3330 
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法原理求出 y 關(guān)于t的線性回歸方程$\widehaty=bx+a$;
(2)已知A 商品近30 天內(nèi)的銷售價(jià)格Z(元)與時(shí)間t(天)的關(guān)系為:z=$\left\{\begin{array}{l}{t+20,(0<20,t∈N)}\\{-t+100,(20≤t≤30,t∈N)}\end{array}\right.$根據(jù)(1)中求出的線性回歸方程,預(yù)測t為何值時(shí),A 商品的日銷售額最大.
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}-\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知過原點(diǎn)的直線l與圓C:x2+y2-6x+5=0相交于不同的兩點(diǎn)A、B,且線段AB中點(diǎn)坐標(biāo)為(2,$\sqrt{2}$),則弦長為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在邊長為4的正方形ABCD中,將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.
(Ⅰ)點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),求證:平面A′ED⊥平面A′FD;
(Ⅱ)當(dāng)BE=BF=$\frac{1}{4}$BC,求三棱錐A′-EFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=|xex|.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=f2(x)+tf(x)(t∈R),滿足g(x)=-1的x有四個(gè),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=f(x)導(dǎo)函數(shù)的圖象如圖所示,則下列說法錯(cuò)誤的是(  )
A.(-1,3)為函數(shù)y=f(x)的遞增區(qū)間B.(3,5)為函數(shù)y=f(x)的遞減區(qū)間
C.函數(shù)y=f(x)在x=0處取得極大值D.函數(shù)y=f(x)在x=5處取得極小值

查看答案和解析>>

同步練習(xí)冊答案