(重慶卷理20)設函數(shù)曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))

處的切線垂直于y軸.

(Ⅰ)用a分別表示bc;

(Ⅱ)當bc取得最小值時,求函數(shù)g(x)=-f(x)e-x的單調區(qū)間.

【標準答案】

解:(Ⅰ)因為

又因為曲線通過點(0,),故

又曲線處的切線垂直于軸,故,因此

 (Ⅱ)由(Ⅰ)得

故當時,取得最小值-.此時有

從而

所以,解得

由此可見,函數(shù)的單調遞減區(qū)間為(-∞,-2)和(2,+∞);單調遞增區(qū)間為(-2,2).

【高考考點】本題主要考查導數(shù)的概念和計算、利用導數(shù)研究函數(shù)的單調性、利用單調性求最值以及不等式的性質。

【易錯提醒】不能求的最小值

【備考提示】應用導數(shù)研究函數(shù)的性質,自2003年新教材使用以來,是常考不衰的考點。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(天津卷理7)設函數(shù)的反函數(shù)為,則

(A)  在其定義域上是增函數(shù)且最大值為1  

(B)  在其定義域上是減函數(shù)且最小值為0   

(C)  在其定義域上是減函數(shù)且最大值為1

(D)  在其定義域上是增函數(shù)且最小值為0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(安徽卷理20)設函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)已知對任意成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(安徽卷理20)設函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)已知對任意成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(重慶卷理20)設函數(shù)曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))

處的切線垂直于y軸.

(Ⅰ)用a分別表示bc;

(Ⅱ)當bc取得最小值時,求函數(shù)g(x)=-f(x)e-x的單調區(qū)間.

查看答案和解析>>

同步練習冊答案