【題目】在正方體中,點(diǎn)、分別為的中點(diǎn),過點(diǎn)作平面使平面,平面若直線平面,則的值為(

A.B.C.D.

【答案】B

【解析】

作出圖形,設(shè)平面分別交于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)的中點(diǎn),同理可得出點(diǎn)的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.

如下圖所示:

設(shè)平面分別交于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接于點(diǎn)

四邊形為正方形,、分別為、的中點(diǎn),則

四邊形為平行四邊形,,

,則四邊形為平行四邊形,

,平面,則存在直線平面,使得,

平面,則平面,又平面,則平面,

此時,平面為平面,直線不可能與平面平行,

所以,平面,,平面,

平面,平面平面,

,所以,四邊形為平行四邊形,可得

的中點(diǎn),同理可證的中點(diǎn),,,因此,.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的標(biāo)準(zhǔn)方程為,其中為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)坐標(biāo)為,為拋物線上任意一點(diǎn)(原點(diǎn)除外),直線過焦點(diǎn)交拋物線于點(diǎn),直線過點(diǎn)交拋物線于點(diǎn),連結(jié)并延長交拋物線于點(diǎn).

1)若弦的長度為8,求的面積;

2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是橢圓的左右焦點(diǎn),且橢圓的離心率為,直線與橢圓交于兩點(diǎn),當(dāng)直線周長為8.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若,是否存在定圓,使得動直線與之相切,若存在寫出圓的方程,并求出的面積的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,設(shè),且函數(shù)上單調(diào)遞增.

①求實(shí)數(shù)的取值范圍;

②設(shè),當(dāng)實(shí)數(shù)取最小值時,求函數(shù)的極小值.

2)當(dāng)時,證明:函數(shù)有兩個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點(diǎn).如果函數(shù)存在不動點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】疫情爆發(fā)以來,相關(guān)疫苗企業(yè)發(fā)揮專業(yè)優(yōu)勢與技術(shù)優(yōu)勢爭分奪秒開展疫苗研發(fā).為測試疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測試沒有通過),選定2000個樣本分成三組,測試結(jié)果如下表:

疫苗有效

673

疫苗無效

77

90

已知在全體樣本中隨機(jī)抽取1個,抽到組疫苗有效的概率是0.33.

1)求,的值;

2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,求組應(yīng)抽取多少個?

3)已知,,求疫苗能通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中提到了一種名為芻甍[chúméng]”的五面體(如圖),四邊形為矩形,棱.若此幾何體中,,都是邊長為的等邊三角形,則此幾何體的體積為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案