設(shè)函數(shù)f(x),g(x)的定義域分別為Df,Dg,且Df?Dg.若對(duì)于任意x∈Df,都有g(shù)(x)=f(x),則稱函數(shù)g(x)為f(x)在Dg上的一個(gè)延拓函數(shù).設(shè)f(x)=x2+2x,x∈(-∞,0],g(x)為f(x)在R上的一個(gè)延拓函數(shù),且g(x)是偶函數(shù),則g(x)=
x2-2|x|
x2-2|x|
分析:由題意可得當(dāng)x≤0時(shí),g(x)=f(x)=x2+2x,結(jié)合函數(shù)g(x)為偶函數(shù)可得,g(-x)=g(x)可求x>0時(shí)的函數(shù)的表達(dá)式,進(jìn)而可求函數(shù)g(x)
解答:解:由題意可得當(dāng)x≤0時(shí),g(x)=f(x)=x2+2x
由函數(shù)g(x)為偶函數(shù)可得,g(-x)=g(x)
當(dāng)x>0時(shí),則-x<0,g(-x)=x2-2x,則g(x)=x2-2x
∴g(x)=x2-2|x|
故答案為:x2-2|x|
點(diǎn)評(píng):本題以新定義為切入點(diǎn),主要考查了利用偶函數(shù)的性質(zhì)求解函數(shù)的解析式,屬于函數(shù)知識(shí)的綜合應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x),g(x)的定義域都是I,則g(x)>f(x)恒成立的充分必要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)g(x)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),且滿足g(x+1)=g(x)+2x+1,設(shè)函數(shù)f(x)=m[g(x+1)-1]-lnx,其中m為常數(shù)且m≠0.
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)-2<m<0時(shí),判斷函數(shù)f(x)的單調(diào)性并且說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為F、G,且F⊆G,若對(duì)任意的x∈F,都有g(shù)(x)=f(x),則稱g(x)為f(x)在G上的一個(gè)“延拓函數(shù)”.已知函數(shù)f(x)=(
12
)x(x≤0)
,若g(x)為f(x)在實(shí)數(shù)集R上的一個(gè)延拓函數(shù),且g(x)是偶函數(shù),則函數(shù)g(x)=
2|x|
2|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x),g(x)在[a,b]上可導(dǎo),且f'(x)>g'(x),則當(dāng)a<x<b時(shí)有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案