(本小題滿分13分)
已知常數a為正實數,曲線Cn:y=在其上一點Pn(xn,yn)的切線ln總經過定點(-a,0)(n∈N*).
(1)求證:點列:P1,P2,…,Pn在同一直線上;
(2)求證: (n∈N*).
證法一:(1)∵f(x)=,
∴f′(x)=·(nx)′=·.(1分)
Cn:y=在點Pn(xn,yn)處的切線ln的斜率kn=f′(xn)=·,
∴ln的方程為y-yn=·(x-xn).(2分)
∵ln經過點(-a,0),
∴yn=-·(-a-xn)=·(a+xn).
又∵Pn在曲線Cn上,∴yn==·(a+xn),
∴xn=a,∴yn=,∴Pn(a,)總在直線x=a上,
即P1,P2,…,Pn在同一直線x=a上.(4分)
(2)由(1)可知yn=,∴f(i)===.(5分)
=<=2(-)(i=1,2,…,n),
.(9分)
設函數F(x)=-ln(x+1),x∈[0,1],有F(0)=0,
∴F′(x)=-==>0(x∈(0,1)),
∴F(x)在[0,1]上為增函數,
即當0<x<1時F(x)>F(0)=0,故當0<x<1時>ln(x+1)恒成立.(11分)
取x=(i=1,2,3,…,n),f(i)=>ln(1+)=ln(i+1)-lni,
即f(1)=>ln2,f(2)=>ln(1+)=ln3-ln2,…,f(n)=>ln(n+1)-lnn,
綜上所述有 (n∈N*).(13分)
證法二:(1)設切線ln的斜率為kn,由切線過點(-a,0)得切線方程為y=kn(x+a),
則方程組的解為.(1分)
由方程組用代入法消去y化簡得kx2+(2ak-n)x+ka2=0,(*)
有Δ=(2ak-n)2-4k·ka2=-4ank+n2=0,
∴k=.(2分)
代入方程(*),得x2+(2a·-n)x+·a2=0,即x2-2a·x+a2=0,
∴x=a,即有xn=a,yn==,
即P1,P2,…,Pn在同一直線x=a上.(4分)
(2)先證:0<x<1時>x>ln(x+1),以下類似給分
【解析】略
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數.
(1)求函數的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.
(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為的函數是奇函數.
(1)求的值;(2)判斷函數的單調性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數,數列{}的首項.
(1) 求函數的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數列的前項和
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com