17.在△ABC中,G為重心,BE為AC的中線,$\overrightarrow{AG}$∥$\overrightarrow{CD}$,$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),則λ的值為$\frac{5}{4}$.

分析 根據(jù)三角形的重心與向量共線的定義,求出$\overrightarrow{AD}$的表達式,利用向量相等即可求出λ的值.

解答 解:因為G是三角形的重心,所以$\overrightarrow{AG}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
由$\overrightarrow{CD}$∥$\overrightarrow{AG}$,可設$\overrightarrow{CD}$=k$\overrightarrow{AG}$=$\frac{k}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
可得$\overrightarrow{AD}$=$\overrightarrow{AC}$+$\overrightarrow{CD}$=$\overrightarrow{AC}$+$\frac{k}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{k}{3}$$\overrightarrow{AB}$+(1+$\frac{k}{3}$)$\overrightarrow{AC}$,
因為$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),
所以k=$\frac{3}{4}$,
λ=1+$\frac{1}{4}$=$\frac{5}{4}$.
故答案為:$\frac{5}{4}$.

點評 本題考查了向量在幾何中的應用問題,也考查平面向量的基本定理,是中檔題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.方程lg(4x2+4ax)=1g(4x-a+1)有唯一解,則實數(shù)a的取值范圍是[$\frac{1}{5}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{3}{x}-x+alnx$,且x=3是函數(shù)f(x)的一個極值點.
(Ⅰ)求a的值;(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)設g(x)=f(x)-m,討論函數(shù)y=g(x)在區(qū)間(0,5]上零點的個數(shù)?
(參考數(shù)據(jù):ln5≈1.61,ln3≈1.10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設函數(shù)f(x)=lnx+1.
(1)已知函數(shù)$F(x)=f(x)+\frac{1}{4}{x^2}-\frac{3}{2}x+\frac{1}{4}$,求函數(shù)F(x)的極值;
(2)已知函數(shù)G(x)=f(x)+ax2-(2a+1)x+a(a>0).若存在實數(shù)m∈(2,3),使得當x∈(0,m]時,函數(shù)G(x)的最大值為G(m),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.使等式$\sqrt{\frac{1+sin2θ}{1-sin2θ}}$=$\frac{1}{cos2θ}$+tan2θ成立的角θ的范圍是$(-\frac{π}{4}+kπ,\frac{π}{4}+kπ)(k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知$\overrightarrow{a}$、$\overrightarrow$是兩個不共線的向量,且$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ).
(1)求證:$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$垂直;
(2)若α∈(-$\frac{π}{4}$,$\frac{π}{4}$),β=$\frac{π}{4}$,且|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{\frac{16}{5}}$,求sinα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(2+x)-log${\;}_{\frac{1}{2}}$(2-x),則不等式f(x)<f(1-x)的解集為( 。
A.(-∞,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-1,$\frac{1}{2}$)D.($\frac{1}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(實驗班題)已知函數(shù)f(x)=2cosxsin(x-$\frac{π}{3}$)+$\sqrt{3}$sin2x+sinxcosx.
(1)求函數(shù)y=f(x)的最小正周期;
(2)若2f(x)-m+1=0在[$\frac{π}{6}$,$\frac{7π}{12}$]有實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知各項均為正數(shù)的數(shù)列{an}的前n項和滿足Sn>1,6Sn=(an+1)(an+2).
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)求證:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$<$\frac{1}{6}$.

查看答案和解析>>

同步練習冊答案