A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
分析 設(shè)等差數(shù)列{an}的首項(xiàng)為a,公差為d,從而可得d=2a,從而求得$\frac{{S}_{6}}{{S}_{12}}$=$\frac{6a+15d}{12a+\frac{12×11}{2}d}$=$\frac{1}{4}$.
解答 解:設(shè)等差數(shù)列{an}的首項(xiàng)為a,公差為d,
則S3=3a+$\frac{3×2}{2}$d=3(a+d),S6=6a+$\frac{5×6}{2}$d,
∵$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{4}$,
∴6a+$\frac{5×6}{2}$d=4(3(a+d)),
解得,d=2a,
故$\frac{{S}_{6}}{{S}_{12}}$=$\frac{6a+15d}{12a+\frac{12×11}{2}d}$=$\frac{36a}{144a}$=$\frac{1}{4}$,
故選C.
點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0° | B. | 90° | C. | 180° | D. | 270° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{5}$i | B. | $\frac{1}{5}$i | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | -8 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-y2=1 | B. | x2-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1 | D. | 5x2-$\frac{5{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | $-\frac{5}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?a0<1,函數(shù)f(x)=xa0(x>0)是減函數(shù) | B. | ?a>1,函數(shù)f(x)=xa(x>0)不是減函數(shù) | ||
C. | ?a0>1,函數(shù)f(x)=xa(x>0)不是增函數(shù) | D. | ?a>1,函數(shù)f(x)=xa(x>0)是減函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com