精英家教網 > 高中數學 > 題目詳情
如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,垂足為D,則線段CD的長為   
【答案】分析:連接圓心O與切點C,由切線性質可知OC垂直于直線l,又因為AD也垂直與直線l,得出OC平行于AD,根據AB為圓的直徑,利用直徑所對的圓周角為直角得到三角形ABC為直角三角形,再根據BC和AB的長度,利用勾股定理求出AC的長,且利用在直角三角形中一直角邊等于斜邊的一半,則這條直角邊所對的角為30°推出角CAB為30°,等邊對等角和平行線的性質可知角CAD等于30°,在直角三角形ADC中,利用30°角所對的直角邊等于斜邊的一半求出CD即可.
解答:解:連接OC,則OC⊥直線l,所以OC∥AD,
∵AB為圓的直徑,∴∠ACB=90°,
又AB=6,BC=3,所以∠CAB=30°,AC==3,
由OA=OC得,∠ACO=∠CAB=30°,
∵OC∥AD,
∴∠CAD=∠ACO=30°,
∴CD=AC=×3=
點評:此題考查學生靈活運用圓的切線垂直于過切點的直徑,掌握圓中的一些基本性質,靈活運用直角三角形的邊角關系化簡求值,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,垂足為D,則線段CD的長為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,則線段AE的長為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•天門模擬)(1)如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過點C作圓的切線l,過點A作直線l的垂線AD,D為垂足,AD與圓O交于點E,則線段AE的長為
4
4

(2)在平面直角坐標系下,曲線C1
x=2t+2a
y=-t
(t為參數),曲線C2
x=2sinθ
y=1+2cosθ
(θ為參數),若曲線C1、C2有公共點,則實數a的取值范圍為
[1-
5
,1+
5
]
[1-
5
,1+
5
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鹽城一模)[A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,求線段AE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(幾何證明選做題) 如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.則DE=
8
8

B.(坐標系與參數方程選做題)已知直線C1
x=1+tcosα
y=tsinα
(t為參數),C2
x=cosθ
y=sinθ
(θ為參數),當α=
π
3
時,C1與C2的交點坐標為
(1,0);(
1
2
,-
3
2
)
(1,0);(
1
2
,-
3
2
)

C.(不等式選做題)若不等式|2a-1|≤|x+
1
x
|
對一切非零實數a恒成立,則實數a的取值范圍
[-
1
2
,
3
2
]
[-
1
2
3
2
]

查看答案和解析>>

同步練習冊答案