(2008•奉賢區(qū)一模)設(shè)向量
a
=(-2,1),
b
=(1,λ) (λ∈R),若
a
b
的夾角為135°,則λ的值是(  )
分析:利用向量的數(shù)量積計算公式,列出關(guān)于λ的方程,并解出即可.
解答:解:根據(jù)向量的數(shù)量積計算公式,得到-2+λ=
5
×
1+λ2
×cos135°兩邊平方并化簡整理得:3λ2+8λ-3=0
解得λ=-3或
1
3

故選D
點評:本題考查向量的數(shù)量積計算公式的簡單直接應(yīng)用,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)一模)我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當且僅當x=y時等號成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)設(shè)函數(shù)g(x)=-x2,求證:g(x)∈M.
(3)已知函數(shù)f(x)=log2x∈M.試利用此結(jié)論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)一模)我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進制形式,簡記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個2進制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進制的簡記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求證:bn=
2
7
8n-
2
7

(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)一模)(x+2)4的二項展開式中的第三項是
24x2
24x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)一模)已知復(fù)數(shù)w滿足2w-4=(3+w)i(i為虛數(shù)單位),則w=
1+2i
1+2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)一模)已知圓錐的母線與底面所成角為60°,母線長為4,則圓錐的側(cè)面積為

查看答案和解析>>

同步練習冊答案