【題目】已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線在處的切線為,若與點(diǎn)的距離為,求的值;
(2)若對(duì)于任意實(shí)數(shù), 恒成立,試確定的取值范圍;
(3)當(dāng)時(shí),函數(shù)在上是否存在極值?若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) 或 (2) (3)不存在
【解析】試題分析:
(1)該問(wèn)切點(diǎn)橫坐標(biāo)已知,則利用切點(diǎn)在曲線上,帶入曲線即可得到切點(diǎn)的縱坐標(biāo),對(duì)進(jìn)行求導(dǎo)并得到在切點(diǎn)處的導(dǎo)函數(shù)值即為切線的斜率,有切線的斜率,切線又過(guò)切點(diǎn),利用直線的點(diǎn)斜式即可求的切線的方程,利用點(diǎn)到直線的距離公式結(jié)合條件點(diǎn)到切線的距離為即可求的參數(shù)的值.
(2)該問(wèn)為恒成立問(wèn)題可以考慮分離參數(shù)法,即把參數(shù)a與x進(jìn)行分離得到,則,再利用函數(shù)的導(dǎo)函數(shù)研究函數(shù)在區(qū)間的最大值,即可求的a的取值范圍.
(3)根據(jù)極值的定義,函數(shù)在區(qū)間有零點(diǎn)且在零點(diǎn)附近的符號(hào)不同,求導(dǎo)可得,設(shè),求求導(dǎo)可以得到的導(dǎo)函數(shù)在區(qū)間恒為正數(shù),則函數(shù)在區(qū)間上是單調(diào)遞增,即可得到函數(shù)進(jìn)而得到恒成立,即在區(qū)間上沒(méi)有零點(diǎn),進(jìn)而函數(shù)沒(méi)有極值.
試題解析:
(1), .
在處的切線斜率為, 1分
∴切線的方程為,即. 3分
又切線與點(diǎn)距離為,所以,
解之得, 或5分
(2)∵對(duì)于任意實(shí)數(shù)恒成立,
∴若,則為任意實(shí)數(shù)時(shí), 恒成立; 6分
若 恒成立,即,在上恒成立, 7分
設(shè)則, 8分
當(dāng)時(shí), ,則在上單調(diào)遞增;
當(dāng)時(shí), ,則在上單調(diào)遞減;
所以當(dāng)時(shí), 取得最大值, , 9分
所以的取值范圍為.
綜上,對(duì)于任意實(shí)數(shù)恒成立的實(shí)數(shù)的取值范圍為. 10分
(3)依題意, ,
所以, 2分
設(shè),則,當(dāng),
故在上單調(diào)增函數(shù),因此在上的最小值為,
即, 12分
又所以在上, ,
即在上不存在極值. 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓: 的離心率為, 為橢圓的右焦點(diǎn), , .
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過(guò)作,交直線于點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號(hào)零件,按規(guī)定該型號(hào)零件的質(zhì)量指標(biāo)值落在內(nèi)為優(yōu)質(zhì)品.從兩個(gè)企業(yè)生產(chǎn)的零件中各隨機(jī)抽出了500件,測(cè)量這些零件的質(zhì)量指標(biāo)值,得結(jié)果如下表:
甲企業(yè):
乙企業(yè):
(1)已知甲企業(yè)的500件零件質(zhì)量指標(biāo)值的樣本方差,該企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為質(zhì)量指標(biāo)值的樣本平均數(shù)(注:求時(shí),同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),近似為樣本方差,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計(jì)所生產(chǎn)的零件中,質(zhì)量指標(biāo)值不低于71.92的產(chǎn)品的概率.(精確到0.001)
(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并問(wèn)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.
附注:
參考數(shù)據(jù): ,
參考公式: , ,
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(, )展開(kāi)式的前三項(xiàng)的二項(xiàng)式系數(shù)之和為16,所有項(xiàng)的系數(shù)之和為1.
(1)求和的值;
(2)展開(kāi)式中是否存在常數(shù)項(xiàng)?若有,求出常數(shù)項(xiàng);若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年來(lái),我國(guó)許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進(jìn)行人工降雨,現(xiàn)由天氣預(yù)報(bào)得知,某地在未來(lái)5天的指定時(shí)間的降雨概率是:前3天均為,后2天均為,5天內(nèi)任何一天的該指定時(shí)間沒(méi)有降雨,則在當(dāng)天實(shí)行人工降雨,否則,當(dāng)天不實(shí)施人工降雨.
(1)求至少有1天需要人工降雨的概率;
(2)求不需要人工降雨的天數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)民族文化,某校舉行了“我愛(ài)國(guó)學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(jī)(得分均為整數(shù),滿足100分)進(jìn)行統(tǒng)計(jì)制表,其中成績(jī)不低于80分的考生被評(píng)為優(yōu)秀生,請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計(jì)概率,回答下列問(wèn)題.
分組 | 頻數(shù) | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計(jì) | 100 | 1.00 |
(1)求的值及隨機(jī)抽取一考生恰為優(yōu)秀生的概率;
(2)按頻率分布表中的成績(jī)分組,采用分層抽樣抽取20人參加學(xué)校的“我愛(ài)國(guó)學(xué)”宣傳活動(dòng),求其中優(yōu)秀生的人數(shù);
(3)在第(2)問(wèn)抽取的優(yōu)秀生中指派2名學(xué)生擔(dān)任負(fù)責(zé)人,求至少一人的成績(jī)?cè)?/span>的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在等腰直角三角形中, , 為的中點(diǎn),點(diǎn)在上,且,現(xiàn)沿將折起到的位置,使,點(diǎn)在上,且.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 是的導(dǎo)函數(shù).
(1)求的極值;
(2)證明:對(duì)任意實(shí)數(shù),都有恒成立;
(3)若在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com