某酒廠制作了3種不同的精美卡片,每瓶酒酒盒隨機裝入一張卡片,集齊3種卡片可獲獎,現(xiàn)購買該種酒5瓶,能獲獎的概率為________.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

為了參加2013年市級高中籃球比賽,該市的某區(qū)決定從四所高中學校選出人組成男子籃球隊代表所在區(qū)參賽,隊員來源人數(shù)如下表:
學校
學校甲
學校乙
學校丙
學校丁
人數(shù)




該區(qū)籃球隊經(jīng)過奮力拼搏獲得冠軍,現(xiàn)要從中選出兩名隊員代表冠軍隊發(fā)言.
(Ⅰ)求這兩名隊員來自同一學校的概率;
(Ⅱ)設(shè)選出的兩名隊員中來自學校甲的人數(shù)為,求隨機變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
一個不透明的袋子中裝有4個形狀相同的小球,分別標有不同的數(shù)字2,3,4,,現(xiàn)從袋中隨機摸出2個球,并計算摸出的這2個球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進行重復試驗。記A事件為“數(shù)字之和為7”.試驗數(shù)據(jù)如下表
摸球總次數(shù)
10
20
30
60
90
120
180
240
330
450
“和為7”出現(xiàn)的頻數(shù)
1
9
14
24
26
37
58
82
109
150
“和為7”出現(xiàn)的頻率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
(參考數(shù)據(jù):
(Ⅰ)如果試驗繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為7”的頻率將穩(wěn)定在它的概率附近。試估計“出現(xiàn)數(shù)字之和為7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的條件下,設(shè)定一種游戲規(guī)則:每次摸2球,若數(shù)字和為7,則可獲得獎金7元,否則需交5元。某人摸球3次,設(shè)其獲利金額為隨機變量元,求的數(shù)學期望和方差。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從-1、0、1、2這四個數(shù)中選出三個不同的數(shù)作為二次函數(shù)f(x)=ax2+bx+c的系數(shù)組成不同的二次函數(shù),其中使二次函數(shù)有兩個零點的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

甲、乙兩人下棋,和棋的概率為,乙獲勝的概率為,則下列說法正確的是(  )
A.甲獲勝的概率是
B.甲不輸?shù)母怕适?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824040449916298.png" style="vertical-align:middle;" />
C.乙輸了的概率是
D.乙不輸?shù)母怕适?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824040449916298.png" style="vertical-align:middle;" />

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從一副沒有大小王的52張撲克牌中隨機抽取1張,事件A為“抽得紅桃8”,事件B為“抽得為黑桃”,則事件“A+B”的概率值是________(結(jié)果用最簡分數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

形狀如圖所示的三個游戲盤中(圖①是正方形,MN分別是所在邊中點,圖②是半徑分別為2和4的兩個同心圓,O為圓心,圖③是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.

(1)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(2)用隨機變量X表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一出租車司機從飯店到火車站的途中經(jīng)過六個交通崗,假設(shè)他在各交通崗遇到紅燈這一事件是相互獨立的,并且概率都是.那么這位司機遇到紅燈前,已經(jīng)通過了兩個交通崗的概率是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分,該射手每次射擊的結(jié)果相互獨立.假設(shè)該射手完成以上三次射擊.
(1)求該射手恰好命中兩次的概率;
(2)求該射手的總得分X的分布列及數(shù)學期望E(X);
(3)求該射手向甲靶射擊比向乙靶射擊多擊中一次的概率.

查看答案和解析>>

同步練習冊答案