16.已知F1、F2為雙曲線=1(a>0,b>0且a≠b)的兩個焦點,P為雙曲線右支上異于頂點的任意一點,O為坐標原點.下面四個命題

(A)△PF1F2的內切圓的圓心必在直線x=a上;

(B)△PF1F2的內切圓的圓心必在直線x=b上;

(C)△PF1F2的內切圓的圓心必在直線OP上;

(D)△PF1F2的內切圓必通過點(a,0).

    其中真命題的代號是__________(寫出所有真命題的代號).

(A)(D)

解析:內切圓圓心為△PF1F2各角平分線交點,而OP為中點,二者不重合,從而C錯.

如圖M為內心,ABC為內切圓與各邊切點,則

F1C+CF2=2C

F1C-CF2=F1A-BF2=F1P-PF2=2a

從而F1C=a+C

C點橫坐標為a.從而A、D對B錯.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A.(1,+∞)B.(0,3]C.(1,3]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省襄樊四中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西省榆林市神木中學高三(上)數(shù)學寒假作業(yè)1(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省西安市西工大附中高考數(shù)學四模試卷(文科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習冊答案