13.數(shù)列{an}中,如果an=2n,n∈N*,那么這個數(shù)列是( 。
A.公差為2的等差數(shù)列B.首項為1的等差數(shù)列
C.公比為2的等比數(shù)列D.首項為1的等比數(shù)列

分析 根據(jù)題意,由數(shù)列的通項公式可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{{2}^{n}}{{2}^{n-1}}$=2,結(jié)合等比數(shù)列的定義分析可得答案.

解答 解:根據(jù)題意,數(shù)列{an}中,an=2n,
則有$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{{2}^{n}}{{2}^{n-1}}$=2,
則這個數(shù)列是公比為2的等比數(shù)列;
故選:C.

點評 本題考查等比數(shù)列的通項公式,關(guān)鍵是掌握等比數(shù)列的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,正四面體S-ABC中,如果E,F(xiàn)分別是SC,AB的中點,那么異面直線EF與SA所成的角等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二次函數(shù)f(x)=x2-4x+b的最小值是0,不等式f(x)<4的解集為A.
(1)求集合A;
(2)設(shè)集合B={x||x-2|<a},若集合B是集合A的子集,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足a1=3,an+1=an+3,數(shù)列{bn}的前n項和為Sn,且滿足2Sn=1-bn
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)z滿足z•i=1+2i,則在復(fù)平面內(nèi),z所對應(yīng)的點的坐標是(  )
A.(2,1)B.(1,2)C.(-1,2)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)=lnx,且x0、x1、x2∈(0,+∞),下列命題:
①若x1<x2,則$\frac{1}{{x}_{2}}$>$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
②存在x0∈(x1,x2),(x1<x2),使得$\frac{1}{{x}_{0}}=\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$
③若x1>1,x2>1,則$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1
④對任意的x1、x2,都有f($\frac{{x}_{1}+{x}_{2}}{2}$)$>\frac{f({x}_{1})+f({x}_{2})}{2}$
其中正確的是②③④(把你認為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=${2}^{sin(x-\frac{π}{4})}$的單調(diào)增區(qū)間為( 。
A.[-$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈z)B.[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈z)
C.[$\frac{3π}{4}$+kπ,$\frac{7π}{4}$+kπ](k∈z)D.[$\frac{3π}{4}$+2kπ,$\frac{7π}{4}$+2kπ](k∈z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,已知$\sqrt{3}tanAtanB-\sqrt{3}=tanA+tanB$,記角A,B,C的對邊依次為a,b,c.
(1)求角C的大;
(2)若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)變量 x,y 滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,則目標函數(shù)z=y-2x的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案