【題目】已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【答案】(1)(2)
【解析】
(1)根據(jù)函數(shù)在上單調(diào)遞減轉(zhuǎn)化為在上恒成立問題,再通過不等式恒成立條件求解即可
(2)令,根據(jù)在區(qū)間上,函數(shù)的圖象恒在曲線下方轉(zhuǎn)化成在區(qū)間上恒成立,求得,分別對和進行分類討論,結(jié)合正負判斷單調(diào)性,再結(jié)合恒成立問題進一步求解即可
解:(1)在區(qū)間上單調(diào)遞減,
則在區(qū)間上恒成立.
即,而當時,,故.
所以.
(2)令,定義域為.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.
∵
①若,令,得極值點,,
當,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當,即時,同理可知,在區(qū)間上,
有,也不合題意;
②若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是
綜合①②可知,當時,函數(shù)的圖象恒在直線下方.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)遞增區(qū)間.
(2)在ΔABC中,角A,B,C所對的邊分別為a,b,c,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①命題“若,則”的逆否命題;
②“,使得”的否定是:“,均有”;
③命題“”是“”的充分不必要條件;
④:,:,且為真命題.
其中真命題的序號是________.(填寫所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)的圖象與軸相切.
(1)求實數(shù)a的值;
(2)求的單調(diào)區(qū)間;
(3)當時,恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】萊昂哈德·歐拉,瑞士數(shù)學家、自然科學家.歲時入讀巴塞爾大學,歲大學畢業(yè),歲獲得碩士學位,他是數(shù)學史上最多產(chǎn)的數(shù)學家.其中之一就是他發(fā)現(xiàn)并證明歐拉公式,從而建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系.若將其中的取作就得到了歐拉恒等式,它是數(shù)學里令人著迷的一個公式,它將數(shù)學里最重要的幾個量聯(lián)系起來:兩個超越數(shù):自然對數(shù)的底數(shù),圓周率;兩個單位:虛數(shù)單位和自然數(shù)單位;以及被稱為人類偉大發(fā)現(xiàn)之一的,數(shù)學家評價它是“上帝創(chuàng)造的公式”請你根據(jù)歐拉公式:,解決以下問題:
(1)試將復數(shù)寫成(、,是虛數(shù)單位)的形式;
(2)試求復數(shù)的模.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有
A. 72種 B. 36種 C. 24種 D. 18種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為實數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴重問題,為了了解聲音強度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強度和聲音能量(,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.
表中.
(1)根據(jù)散點圖判斷,與哪一個適宜作為聲音強度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)表中數(shù)據(jù),求聲音強度關(guān)于聲音能量的回歸方程.
參考公式:;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】菜市房管局為了了解該市市民2018年1月至2019年1月期間購買二手房情況,首先隨機抽樣其中200名購房者,并對其購房面積(單位:平方米,)進行了一次調(diào)查統(tǒng)計,制成了如圖1所示的頻率分布南方匿,接著調(diào)查了該市2018年1月﹣2019年1月期間當月在售二手房均價(單位:萬元/平方米),制成了如圖2所示的散點圖(圖中月份代碼1﹣13分別對應2018年1月至2019年1月).
(1)試估計該市市民的平均購房面積.
(2)現(xiàn)采用分層抽樣的方法從購房耐積位于的40位市民中隨機取4人,再從這4人中隨機抽取2人,求這2人的購房面積恰好有一人在的概率.
(3)根據(jù)散點圖選擇和兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為和,并得到一些統(tǒng)計量的值,如表所示:
| ||
請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測2019年6月份的二手房購房均價(精確到).
參考數(shù)據(jù):,,,,,,,.參考公式:相關(guān)指數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com