已知f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖象關于點(1,0)對稱.若對任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,則當x>3時,x2+y2的取值范圍是( )
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)
【答案】分析:由函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,結合圖象平移的知識可知函數(shù)y=f(x)的圖象關于點(0,0)對稱,從而可知函數(shù)y=f(x)為奇函數(shù),由f(x2-6x+21)+f(y2-8y)<0恒成立,可把問題轉(zhuǎn)化為(x-3)2+(y-4)2<4,借助于的有關知識可求
解答:解:∵函數(shù)y=f(x-1)的圖象關于點(1,0)對稱
∴函數(shù)y=f(x)的圖象關于點(0,0)對稱,即函數(shù)y=f(x)為奇函數(shù),則f(-x)=-f(x)
又∵f(x)是定義在R上的增函數(shù)且f(x2-6x+21)+f(y2-8y)<0恒成立
∴(x2-6x+21)<-f(y2-8y)=f(8y-y2 )恒成立
∴x2-6x+21<8y-y2
∴(x-3)2+(y-4)2<4恒成立
設M (x,y),則當x>3時,M表示以(3,4)為圓心2為半徑的右半圓內(nèi)的任意一點,
則x2+y2表示在半圓內(nèi)任取一點與原點的距離的平方
結合圓的知識可知13<x2+y2<49
故選 C
點評:本題考查了函數(shù)圖象的平移、函數(shù)的奇偶性、單調(diào)性及圓的有關知識,解決問題的關鍵是把“數(shù)”的問題轉(zhuǎn)化為“形”的問題,借助于圖形的幾何意義減少了運算量,體現(xiàn)“數(shù)形結合:及”轉(zhuǎn)化”的思想在解題中的應用.