已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點P 為橢圓上一點,直線,判斷l(xiāng)與橢圓的位置關系并給出理由;
(3)過橢圓上一點P作橢圓的切線交直線于點A,試判斷線段AP為直徑的圓是否恒過定點,若是,求出定點坐標;若不是,請說明理由.
(1) ;(2)直線l與橢圓相切;(3)

試題分析:(1)直線是拋物線的一條切線.所以將直線代入拋物線方程,即,得出的值,利用,橢圓中,依次解出,從而解出方程;
(2)直線與橢圓方程聯(lián)立,注意用到平方相減消,得到關于的方程,求其,利用點在橢圓上的條件,判定直線與橢圓的位置關系;
(3)首先取兩種特殊情形:切點分別在短軸兩端點時,求其切線方程,并求他們的交點,交點有可能是恒過的定點,如果是圓上恒過的定點,如果是則需滿足,,從而判定所求交點是否是真正的定點.此題屬于較難習題.
試題解析:(1)因為直線是拋物線的一條切線,所以,
        2分
,所以,
所以橢圓的方程是.                 4分
(2)由


 

 
由①2+②

 
∴直線l與橢圓相切                9分
(3)首先取兩種特殊情形:切點分別在短軸兩端點時,
求得兩圓的方程為
,
兩圓相交于點(,0),(,0),
若定點為橢圓的右焦點(.
則需證:.
設點,則橢圓過點P的切線方程是,
所以點
,
 所以.                    11分
若定點為,
,不滿足題意.
綜上,以線段AP為直徑的圓恒過定點(,0).      14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

直線與拋物線交于兩點A、B,如果弦的長度.
⑴求的值;
⑵求證:(O為原點)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點,長軸的左、右端點分別為,且.
(1)求橢圓的方程;
(2)過焦點斜率為)的直線交橢圓兩點,弦的垂直平分線與軸相交于點. 試問橢圓上是否存在點使得四邊形為菱形?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點在雙曲線上,且雙曲線的一條漸近線的方程是
(1)求雙曲線的方程;
(2)若過點且斜率為的直線與雙曲線有兩個不同交點,求實數(shù)的取值范圍;
(3)設(2)中直線與雙曲線交于兩個不同點,若以線段為直徑的圓經(jīng)過坐標原點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,已知橢圓=1的左、右頂點為A、B,右焦點為F.設過點T(t,m)的直線TA、TB與橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設x1=2,x2,求點T的坐標;
(3)設t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓)的焦距為,且過點(,),右焦點為.設,上的兩個動點,線段的中點的橫坐標為,線段的中垂線交橢圓兩點.

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線+=1的離心率,則的值為      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,是雙曲線的左,右焦點,若雙曲線左支上存在一點與點關于直線對稱,則該雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線兩點,點,問是否存在,使?若存在求出的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案