2.已知函數(shù)f(x)=(x2-x-5)ex,g(x)=tx2+ex-4e2(t∈R)(其中e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)是否存在t<0,對任意的x1∈R,任意的x2∈(0,+∞),都有f(x1)>g(x2)?若存在,求出t的取值范圍,若不存在,請說明理由.

分析 (1)求出f′(x)=(x2+x-6)ex,由此利用導(dǎo)數(shù)的性質(zhì)能求出函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)對任意的x1∈R,任意的x2∈(0,+∞),都有f(x1)>g(x2),等價于f(x1min>g(x2max,由此能求出存在t<-$\frac{1}{4}$,對任意的x1∈R,任意的x2∈(0,+∞),都有f(x1)>g(x2).

解答 解:(1)∵f(x)=(x2-x-5)ex,
∴f′(x)=(2x-1)ex+(x2-x-5)ex=(x2+x-6)ex,
當(dāng)f′(x)>0時,x>2或x<-3,
當(dāng)f′(x)<0時,-3<x<2,
∴函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-3),(2,+∞),單調(diào)減區(qū)間為(-3,2),
∴f(x)的極大值為f(-3)=(9+3-5)e-3=7e-3,極小值為f(2)=(4-2-5)e2=-3e2
(2)∵對任意的x1∈R,任意的x2∈(0,+∞),都有f(x1)>g(x2),
∴f(x1min>g(x2max,
∵g(x)=tx2+ex-4e2(t<0)對稱軸x=-$\frac{e}{2t}$>0,
△=e2+16te2,g(x2max=g(-$\frac{e}{2t}$)=$\frac{-16t{e}^{2}-{e}^{2}}{4t}$=$\frac{-{e}^{2}(16t+1)}{4t}$,
由(1)知$f({x}_{1})_{min}=f(2)=-3{e}^{2}$,
∴-3e2>$\frac{-{e}^{2}(16t+1)}{4t}$,
解得t<-$\frac{1}{4}$,
∴存在t<-$\frac{1}{4}$,對任意的x1∈R,任意的x2∈(0,+∞),都有f(x1)>g(x2).

點(diǎn)評 本題考查函數(shù)的單調(diào)區(qū)間與極值的求法,考查滿足條件的實(shí)數(shù)的取值范圍的求法,考查導(dǎo)數(shù)性質(zhì)、二次函數(shù)、函數(shù)的單調(diào)區(qū)間、極值、最值等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,考查創(chuàng)新意識、應(yīng)用意識,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)命題p:若x,y∈R,x=y,$\frac{x}{y}$=1;命題q:若函數(shù)f(x)=ex,則對任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立.在命題①p∧q,②p∨q,③p∧¬q,④¬p∨q中,是真命題的是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動,且AB⊥BC,若點(diǎn)P的坐標(biāo)為$(\frac{8}{3}\;,\;2)$,則$|\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}|$的取值范圍為( 。
A.[8,10]B.[9,11]C.[8,11]D.[9,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某研究中心計(jì)劃研究S市中學(xué)生的視力情況是否存在區(qū)域差異和年級差異.由數(shù)據(jù)庫知S市城區(qū)和郊區(qū)的中學(xué)生人數(shù),如表1.
表1   S市中學(xué)生人數(shù)統(tǒng)計(jì)

人數(shù)    年級
區(qū)域
789101112
城區(qū)300002400020000160001250010000
郊區(qū)500044004000230022001800
現(xiàn)用分層抽樣的方法從全市中學(xué)生中抽取總量百分之一的樣本,進(jìn)行了調(diào)查,得到近視的學(xué)生人數(shù)如表2.
表2   S市抽樣樣本中近視人數(shù)統(tǒng)計(jì)


人數(shù)   年級
區(qū)域
789101112
城區(qū)757276727574
郊區(qū)109158911
(Ⅰ)請你用獨(dú)立性檢驗(yàn)方法來研究高二(11年級)學(xué)生的視力情況是否存在城鄉(xiāng)差異,填寫2×2列聯(lián)表,并判斷能否在犯錯誤概率不超過5%的前提下認(rèn)定“學(xué)生的近視情況與地區(qū)有關(guān)”.
附:
P(K2≥k00.50.40.250.150.10.050.0250.010.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
獨(dú)立性檢驗(yàn)公式為:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)請你選擇合適的角度,處理表1和表2的數(shù)據(jù),列出所需的數(shù)據(jù)表,畫出散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷城區(qū)中學(xué)生的近視情況與年級是成正相關(guān)還是負(fù)相關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=x2+alnx在區(qū)間(1,+∞)上存在極小值,則實(shí)數(shù)a的取值范圍為(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知(1-x+x23(1-2x24=a0+a1x+a2x2+…+a14x14,求a1+a3+a5+…+a13的值.
(2)已知${({x+1})^2}{({x+2})^{2015}}={a_0}+{a_1}({x+2})+{a_2}{({x+2})^2}+…+{a_{2017}}{({x+2})^{2017}}$,求$\frac{a_1}{2}+\frac{a_2}{2^2}+…+\frac{{{a_{2017}}}}{{{2^{2017}}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知平面上一定點(diǎn)C(4,0)和一定直線l:x=1,P(x,y)為該平面上一動點(diǎn),作PQ⊥l,垂足為Q,且$|\overrightarrow{PC}|=2|\overrightarrow{PQ}|$
(1)問點(diǎn)P在什么曲線上?并求出該曲線的方程;
(2)設(shè)直線l:y=kx+1與(1)中的曲線交于不同的兩點(diǎn)A,B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過點(diǎn)D(0,-2)?若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.王府井百貨分店今年春節(jié)期間,消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計(jì),y表示第x天參加抽獎活動的人數(shù),得到統(tǒng)計(jì)表格如下:
x1234567
y58810141517
經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該活動只持續(xù)10天,估計(jì)共有多少名顧客參加抽獎.
參與公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehata=\overline y-\widehatb\overline x$,$\sum_{i=1}^7{{x_i}{y_i}=364}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.B.C.D.16π

查看答案和解析>>

同步練習(xí)冊答案