甲、乙兩人獨立地破譯1個密碼,他們能譯出密碼的概率分別為,

求:(1)兩人都譯出密碼的概率;

(2)兩人都譯不出密碼的概率;

(3)恰有1人譯出密碼的概率;

(4)至多有1人譯出密碼的概率.

解析:本題為相互獨立事件同時發(fā)生的概率,“至多”“至少”可正面計算,也可反面排除.

解:設甲、乙譯出密碼分別記作事件A、B,則P(A)=,P(B)=,P()=,P()=.

(1)兩人都譯出密碼的概率P(AB)=P(A)P(B)=×=.

(2)兩人都譯不出密碼的概率P()=P()P()=×=.

(3)恰有一人譯出密碼的概率為P(A+B)=P(A)P()+P()P(B)=×+×=+=

或1-P(AB)-P()=1.

(4)至多有1人譯出密碼的概率為P()+P(A+B)=+=或1-P(AB)=1=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙兩人獨立地破譯1個密碼,他們能譯出密碼的概率分別為
1
3
1
4
,求
(1)恰有1人譯出密碼的概率;
(2)若達到譯出密碼的概率為
99
100
,至少需要多少乙這樣的人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人獨立地破譯1個密碼,他們能譯出密碼的概率分別為,求

(1)恰有1人譯出密碼的概率;

(2)若達到譯出密碼的概率為,至少需要多少乙這樣的人.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆河南鄭州盛同學校高一下學期第一次月考數(shù)學試卷(解析版) 題型:解答題

甲、乙兩人獨立地破譯1個密碼, 他們能譯出密碼的概率分別為, 求:

(1)甲、乙兩人至少有一個人破譯出密碼的概率;   

(2)兩人都沒有破譯出密碼的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年吉林省高二下學期期末考試文科數(shù)學卷 題型:解答題

(本小題滿分12分)

甲、乙兩人獨立地破譯一份密碼,甲能破譯出密碼的概率是1/3,乙能破譯出密碼的概率是1/4,試求:

①甲、乙兩人都譯不出密碼的概率;

②甲、乙兩人中恰有一人能譯出密碼的概率;

③甲、乙兩人中至多有一人能譯出密碼的概率.

 

查看答案和解析>>

同步練習冊答案