【題目】已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數(shù)列{ }的前n項和為Sn , 則S1S2S3…S10=

【答案】
【解析】解:∵2a1+22a2+23a3+…+2nan=n, ∴2a1+22a2+23a3+…+2n1an1=n﹣1,
∴2nan=1,
∴an= ,
= = = ,
∴Sn=1﹣ + +…+ =1﹣ =
∴S1S2S3…S10= × × ×…× × = ,
所以答案是:
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有 種取法.在這 種取法中,可以分成兩類:一類是取出的m個球全部為白球,共有 種取法;另一類是取出的m個球有m﹣1個白球和1個黑球,共有 種取法.顯然 ,即有等式: 成立.試根據(jù)上述思想化簡下列式子: =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中不正確的是________.(填序號)

①若a∈R,則“<1”是“a>1”的必要不充分條件;

②“pq為真命題”是“pq為真命題”的必要不充分條件;

③若命題p:“x∈R,sin x+cos x”,則p是真命題;

④命題“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的最小值為.

1)求;

2)若,求及此時的最大值.

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(1)利用同角三角函數(shù)間的基本關(guān)系化簡函數(shù)解析式后,分三種情況:小于﹣1時大于﹣1而小于1時大于1時,根據(jù)二次函數(shù)求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

試題解析:

(1)由

.這里

①若則當時,

②若時,

③若則當時,

因此

(2)

①若,則有,矛盾;

②若,則有(舍).

時, 此時

時, 取得最大值為5.

點睛:二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點或二次函數(shù)圖象的頂點處取到;常見題型有:(1)軸固定區(qū)間也固定;(2)軸動(軸含參數(shù)),區(qū)間固定;(3)軸固定,區(qū)間動(區(qū)間含參數(shù)). 找最值的關(guān)鍵是:(1)圖象的開口方向;(2)對稱軸與區(qū)間的位置關(guān)系;(3)結(jié)合圖象及單調(diào)性確定函數(shù)最值.

型】填空
結(jié)束】
21

【題目】已知兩個不共線的向量的夾角為,且為正實數(shù).

1)若垂直,求;

2)若,求的最小值及對應(yīng)的的值,并指出此時向量的位置關(guān)系.

3)若為銳角,對于正實數(shù),關(guān)于的方程有兩個不同的正實數(shù)解,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱垂直于底面,,,、分別是、的中點.

(1)求證:∥平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC中角A,B,C的對邊,函數(shù) 且f(A)=5.
(1)求角A的大。
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線, .

(1)求證:對,直線與圓總有兩個不同的交點;

(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1判斷函數(shù)是否有零點;

2設(shè)函數(shù),上是減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,已知ABC三個頂點坐標為A(7,8)B(10,4),C(2,-4)

(1)求BC邊上的中線所在直線的方程;

(2)求BC邊上的高所在直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)中點坐標公式求出中點的坐標,根據(jù)斜率公式可求得的斜率,利用點斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點斜式可求邊上的高所在直線的方程.

試題解析:1)由B(10,4),C(2,-4),BC中點D的坐標為(60),

所以AD的斜率為k8,

所以BC邊上的中線AD所在直線的方程為y08(x6),

8xy480

2)由B(10,4)C(2,-4)BC所在直線的斜率為k1,

所以BC邊上的高所在直線的斜率為-1

所以BC邊上的高所在直線的方程為y8=-(x7),即xy150

型】解答
結(jié)束】
17

【題目】已知直線lx2y2m20

(1)求過點(2,3)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標軸所圍成的三角形的面積大于4,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案