(本小題滿分12分)如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,。
(Ⅰ)求證:;
(Ⅱ)設(shè)線段的中點(diǎn)為,在直線上是否存在一點(diǎn),使得?若存在,請指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請說明理由;
(Ⅲ)求二面角的大小。
(Ⅰ)證明見解析。
(Ⅱ)為線段AE的中點(diǎn),證明見解析。
(Ⅲ)arctan
本小題主要考查平面與平面垂直、直線與平面垂直、直線與平面平行、二面角等基礎(chǔ)知識,考查空間想象能力、邏輯推理能力和數(shù)學(xué)探究意識,考查應(yīng)用向量知識解決數(shù)學(xué)問題的能力。
解法一:
(Ⅰ)因?yàn)槠矫?img width=47 height=17 src="http://thumb.1010pic.com/pic1/1899/sx/120/285920.gif" >⊥平面,平面,
平面平面,
所以⊥平面
所以⊥。
因?yàn)?img width=45 height=17 src="http://thumb.1010pic.com/pic1/1899/sx/146/285946.gif" >為等腰直角三角形,,
所以
又因?yàn)?img width=84 height=21 src="http://thumb.1010pic.com/pic1/1899/sx/149/285949.gif" >,
所以,
即⊥,
所以⊥平面。………………………………4分
(Ⅱ)存在點(diǎn),當(dāng)為線段AE的中點(diǎn)時(shí),PM∥平面
取BE的中點(diǎn)N,連接AN,MN,則MN∥=∥=PC
所以PMNC為平行四邊形,所以PM∥CN
因?yàn)镃N在平面BCE內(nèi),PM不在平面BCE內(nèi),
所以PM∥平面BCE………………………………8分
(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD
作FG⊥AB,交BA的延長線于G,則FG∥EA。從而,F(xiàn)G⊥平面ABCD
作GH⊥BD于G,連結(jié)FH,則由三垂線定理知,BD⊥FH
因此,∠AEF為二面角F-BD-A的平面角
因?yàn)镕A=FE, ∠AEF=45°,
所以∠AFE=90°,∠FAG=45°.
設(shè)AB=1,則AE=1,AF=。
FG=AF·sinFAG=
在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+=,
GH=BG·sinGBH=·=
在Rt△FGH中,tanFHG= =
故二面角F-BD-A的大小為arctan……………………………12分
解法二:
(Ⅰ)因?yàn)椤鰽BE為等腰直角三角形,AB=AE,
所以AE⊥AB.
又因?yàn)槠矫鍭BEF⊥平面ABCD,AE平面ABEF,
平面ABEF∩平面ABCD=AB,
所以AE⊥平面ABCD.
所以AE⊥AD.
因此,AD,AB,AE兩兩垂直,以A為坐標(biāo)原點(diǎn),建立 如圖所示的直角坐標(biāo)系A(chǔ)-xyz.
設(shè)AB=1,則AE=1,B(0,1,0),D (1, 0, 0 ) ,
E ( 0, 0, 1 ), C ( 1, 1, 0 ).
因?yàn)镕A=FE, ∠AEF = 45°,
所以∠AFE= 90°.
從而,.
所以,,.
,.
所以EF⊥BE, EF⊥BC.
因?yàn)锽E平面BCE,BC∩BE=B ,
所以EF⊥平面BCE.
(Ⅱ) M(0,0,).P(1, ,0).
從而=(,).
于是
所以PM⊥FE,又EF⊥平面BCE,直線PM不在平面BCE內(nèi),
故PM∥平面BCE………………………………8分
(Ⅲ) 設(shè)平面BDF的一個(gè)法向量為,并設(shè)=(x,y,z)
=(1,1,0),
即
去y=1,則x=1,z=3,從=(0,0,3)
取平面ABD的一個(gè)法向量為=(0,0,1)
故二面角F-BD-A的大小為……………………………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com