(本題14分)  設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點(diǎn),,與雙曲線交于不同兩點(diǎn),,問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

9

【解析】由消去化簡(jiǎn)整理得

設(shè),,則

      ①  ………4分

消去化簡(jiǎn)整理得

設(shè),則

      ②  …………8分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052021044078126298/SYS201205202106416562773758_DA.files/image014.png">,所以,此時(shí)

所以.由上式解得.當(dāng)時(shí),由①和②得.因是整數(shù),所以的值為,,,.當(dāng),由①和②得.因是整數(shù),所以,,.于是滿足條件的直線共有9條.………14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省梅州市高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題14分)  設(shè)直線(其中為整數(shù))與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),,問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年深圳高級(jí)中學(xué)高二第一學(xué)期期中測(cè)試數(shù)學(xué)試卷 題型:解答題

(本題14分)  設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題14分)  設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點(diǎn),,與雙曲線交于不同兩點(diǎn),,問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題14分)  設(shè)直線(其中為整數(shù))與橢圓交于不同兩點(diǎn),,與雙曲線交于不同兩點(diǎn),,問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案