12.從點(2,0)引圓x2+y2=1的切線,則切線長為$\sqrt{3}$.

分析 根據(jù)切線長公式進行求解即可.

解答 解:圓心坐標(biāo)為O(0,0),半徑r=1,P(2,0)
則OP=2,
則切線長為$\sqrt{4-1}$=$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點評 本題主要考查直線和圓相切的性質(zhì),根據(jù)切弦長公式是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l過點 A(-2,0)且與直線x+2y-l=0平行.則直線l的方程是x+2y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=|x+1|+|ax+1|
(1)若f(-1)=f(1),f(-$\frac{1}{a}$)=f($\frac{1}{a}$)(a∈R且a≠0),試求a的值;
(2)設(shè)a>0,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知正四棱錐的底面邊長是6,側(cè)棱長為5,則該正四棱錐的側(cè)面積為48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)0<α<π<β<2π,向量$\overrightarrow{a}$=(1,2),$\overline$=(2cosα,sinα),$\overrightarrow{c}$=(sinβ,2cosβ),$\overrightarrowsei2qm4$=(cosβ,-2sinβ).
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求α;
(2)若|$\overrightarrow{c}$+$\overrightarrowigmycgk$|=$\sqrt{3}$,求sinβ+cosβ的值;
(3)若tanαtanβ=4,求證:$\overrightarrow$∥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.關(guān)于x的方程($\frac{3}{5}$)x=$\frac{3a+2}{5-a}$有負(fù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.姐圖,在平面直角坐標(biāo)系中,拋物線y=-(x-2)2+3與y軸交于點A,過點A與x軸平行的直線交拋物線于另一點B,點P是直線AB上方的拋物線上一點,設(shè)點P的橫坐標(biāo)為m,則△PAB的面積S的取值范圍為0<S≤8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.${∫}_{\;}^{\;}$$\frac{1-sinx}{x+cosx}$dx=ln(x+cosx)+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a是函數(shù)f(x)=2-log2x的零點,則a的值為4•

查看答案和解析>>

同步練習(xí)冊答案