已知函數(shù)f(x)=lnx-
ax
.若f(x)<x2在(1,+∞)上恒成立,則a的取值范圍是
 
分析:利用參數(shù)分離做此題比較簡(jiǎn)單,把a(bǔ)和含x的式子放在不等號(hào)的兩邊,最含x的式子,利用導(dǎo)數(shù)求其最值,即可得a的范圍.
解答:解:∵函數(shù)f(x)=lnx-
a
x
,且f(x)<x2在(1,+∞)上恒成立,
∴函數(shù)f(x)=lnx-
a
x
<x2,
∴a>xlnx-x3,令h(x)=xlnx-x3,只要求得h(x)的最大值即可,
h′(x)=lnx+1-3x2,h″(x)=
1-6x2
x
,∵x>1,∴1-6x2<0,
∴h″(x)<0,∴h′(x)在(1,+∞)上為減函數(shù),
∴h′max(x)=h′(1)=-3<0,
∴h′(x)在(1,+∞)小于0,
∴h(x)在(1,+∞)上為減函數(shù),
∴hmax(x)=h(1)=-1<0,∴a>-1
又∵x≠1,∴a可以等于-1,
∴a≥-1.
故答案為:[-1,+∞).
點(diǎn)評(píng):此題主要考查了參數(shù)分離思想,這也是高考愛(ài)考的熱點(diǎn)問(wèn)題,解此題時(shí)要注意函數(shù)的二次求導(dǎo)問(wèn)題,此題是一道好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案