已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有定義,在(0,+∞)上是增函數(shù),f(1)=0,又知函數(shù)g(θ)=sin2θ+mcosθ-2m,數(shù)學(xué)公式,集合M={m|恒有g(shù)(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.

解:∵奇函數(shù)f(x)在(0,+∞)上是增函數(shù),∴f(x)在(-∞,0)上也是增函數(shù),
又由f(1)=0得f(-1)=-f(1)=0
∴滿足的條件是
,即sin2θ+mcosθ-2m<-1,
也即-cos2θ+mcosθ-2m+2<0.
令t=cosθ,則t∈[0,1],又設(shè)δ(t)=-t2+mt-2m+2,0≤t≤1
要使δ(t)<0,必須使δ(t)在[0,1]內(nèi)的最大值小于零
1°當(dāng)<0即m<0時,δ(t)max=δ(0)=-2m+2,解不等式組知m∈∅
2°當(dāng)0≤≤1即0≤m≤2時,δ(t)max=,
<0,解得,故有
當(dāng)>1即m>2時,δ(t)max=-m+1,解不等式組得m>2
綜上:
分析:利用奇函數(shù)在對稱區(qū)間的單調(diào)性相同得到f(x)在在(-∞,0)上也是增函數(shù),f(-1)=0,將集合N中的0用f(-1)代替,利用f(x)的單調(diào)性將f脫去,利用三角函數(shù)的平方關(guān)系將正弦用余弦表示,通過換元轉(zhuǎn)化為二次不等式恒成立,通過轉(zhuǎn)化為求二次函數(shù)的最值,通過對對稱軸的討論求出最值.
點評:本題考查奇函數(shù)在對稱區(qū)間上的單調(diào)性相同、考查利用函數(shù)的單調(diào)性脫去對應(yīng)法則將抽象不等式轉(zhuǎn)化為具體不等式、考查換元法注意換元后新變量的范圍、考查不等式恒成立轉(zhuǎn)化為函數(shù)的最值、考查二次函數(shù)的最值取決于對稱軸與區(qū)間的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知奇函數(shù)f(x)在x≥0時的圖象是如圖所示的拋物線的一部分,
(1)求函數(shù)f(x)的表達式,
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在[-1,0]上單調(diào)遞減,又α,β為銳角三角形的兩內(nèi)角,則有( 。
A、f(sinα-sinβ)≥f(cosα-cosβ)B、f(sinα-cosβ)>f(cosα-sinβ)C、f(sinα-cosβ)≥f(cosα-sinβ)D、f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞增,且f(2x-1)+f(
1
2
)<0,則x的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1};
④在極坐標系中,圓ρ=-4cosθ的圓心的直角坐標是(-2,0).
其中正確的是
②,④
②,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞減,且f(3-a)+f(1-a)<0,則a的取值范圍是
(-∞,2)
(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案