已知
m
=(2
3
,1) , 
n
=(cos2
A
2
,sin(B+C))
,其中A,B,C是△ABC的內(nèi)角.
(1)當(dāng)A=
π
2
時(shí),求|
n
|
的值
(2)若BC=1 , |
AB
|=
3
,當(dāng)
m
n
取最大值時(shí),求A大小及AC邊長(zhǎng).
分析:(1)先化簡(jiǎn)
n
,再利用模的計(jì)算公式即可得出;
(2)利用數(shù)量積的運(yùn)算性質(zhì)、倍角公式、誘導(dǎo)公式、兩角和差的正弦公式即可得到A,再利用余弦定理即可得到AC.
解答:解:(1)當(dāng)A=
π
2
時(shí),
n
=(cos2
π
4
,sin
π
2
)
=(
1
2
,1)

|
n
|=
(
1
2
)1+12
=
5
2

(2)∵
m
n
=2
3
cos2
A
2
+sin(B+C)
=
3
(1+cosA)+sinA
=2sin(A+
π
3
)
+
3

∵0<A<π,∴
π
3
<A<
3

∴當(dāng)A+
π
3
=
π
2
時(shí),即A=
π
6
時(shí),sin(A+
π
3
)=1
,此時(shí)
m
n
取得最大值2+
3

由余弦定理得BC2=AB2+AC2-2AB×ACcosA,即12=(
3
)2+AC2-2
3
AC×
3
2
,
化為AC2-3AC+2=0,解得AC=1或2.
點(diǎn)評(píng):熟練掌握模的計(jì)算公式、數(shù)量積的運(yùn)算性質(zhì)、倍角公式、誘導(dǎo)公式、兩角和差的正弦公式、余弦定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上滿足下面條件的任意兩點(diǎn).若
OM
=
1
2
(
OA
+
OB
)
,則點(diǎn)M的橫坐標(biāo)為
1
2

(1)求證:M點(diǎn)的縱坐標(biāo)為定植;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,求Sn(n≥2,n∈N*).
(3)已知an=
2
3
(n=1)
1
(Sn+1)(Sn+1+1)
(n≥2)
,(其中n∈N*,又知Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<(15)λ(Sn+1+1)對(duì)于一切n∈N*.都成立,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
圖象上的任意兩點(diǎn),點(diǎn)M(
1
2
,y0)
為線段AB的中點(diǎn).
(1)求:y0的值.
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
),  (n≥2,且n∈N*)
,求:Sn
(3)在 (2)的條件下,已知an=
2
3
                     (n=1) 
1
(Sn+1)(Sn+1+1)
 (n≥2)
,記Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<λ(Sn+1+1)對(duì)一切n∈N*都成立,求:λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上滿足下面條件的任意兩點(diǎn).若
OM
=
1
2
(
OA
+
OB
)
,則點(diǎn)M的橫坐標(biāo)為
1
2

(1)求證:M點(diǎn)的縱坐標(biāo)為定植;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,求Sn(n≥2,n∈N*).
(3)已知an=
2
3
(n=1)
1
(Sn+1)(Sn+1+1)
(n≥2)
,(其中n∈N*,又知Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<(15)λ(Sn+1+1)對(duì)于一切n∈N*.都成立,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
m
=(2
3
,1) , 
n
=(cos2
A
2
,sin(B+C))
,其中A,B,C是△ABC的內(nèi)角.
(1)當(dāng)A=
π
2
時(shí),求|
n
|
的值
(2)若BC=1 , |
AB
|=
3
,當(dāng)
m
n
取最大值時(shí),求A大小及AC邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案